Average Energy for n-State Systems?

danyull
Messages
9
Reaction score
1

Homework Statement


Find the average energy ##\langle E \rangle## for
(a) an n-state system in which a given state can have energy 0, ε, 2ε, 3ε... nε.
(b) a harmonic oscillator, in which a state can have energy 0, ε, 2ε, 3ε... (i.e. with no upper limit).

Homework Equations


Definition of temperature: ##β = \frac 1 {K_BT} = \frac {d lnΩ(E)} {dE}##
Boltzmann distribution: ##P(ε) ∝ e^{-εβ}##

The Attempt at a Solution


Since the energy here takes on discrete values, the average is found by taking the weighted sum of the probabilities, $$\langle E \rangle = \sum_{n=0}^n nε~e^{-nεβ}$$
and in the case of part (b), the sum goes to infinity. My problem is I don't know how to evaluate these sums. Any help would be appreciated, thanks!
 
Physics news on Phys.org
One commonly used trick to evaluate such sums is the following observation that
<br /> n\varepsilon\,e^{-n\varepsilon \beta} = - \frac{\partial}{\partial \beta } (e^{-n\varepsilon \beta})<br />
and use the fact that the partial derivative commutes with the summation to get
<br /> \sum_{n=0}^{N} n\varepsilon\,e^{-n\varepsilon \beta} = - \frac{\partial}{\partial \beta } \sum_{n=0}^{N} e^{-n\varepsilon \beta}<br />
The summation is now simply just a geometric series.
(and don't forget to normalize your expectation value)
 
  • Like
Likes danyull, TSny and DrClaude
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top