Average Internal Energy of 2 Paramagnets

Poop-Loops
Messages
731
Reaction score
1

Homework Statement



The problem is that there are two , two-state paramagnets with Na = Nb (number of dipoles in each). uB = |kT|, energies of each dipole are + or - uB. Different internal energies to start, but they are brought together at thermal equilibrium and I need to find the average internal energy of each after that happens.

Homework Equations



U = -N \frac{(\mu B)^2}{kT}

The Attempt at a Solution



Since N=N, my only thought is Ua + Ub divided by 2. If Ua = Ub, then that makes sense. If Ua > Ub, but both < 0, then Ua would give energy to Ub, since the temperature is higher, yes? If Ua < Ub but both Ub > 0, Ua <0, then it depends on the exact values, but they would both tend towards having infinite temperature, since they would both want to have higher entropy, right? It just seems like I'm missing something really big here.

My book is Schroeder's Thermal Physics, which doesn't have any answers in the back, so I can't even tell if I'm doing the problems correctly.

EDIT:

My other idea is that both temperatures have to be equal to have thermal equilibrium, so I should solve for temperature first. Then solve it so that Ta = Tb and see what happens then?

EDIT2: That doesn't seem to work, either, since I get Ua/Ub = Ta/Tb, but have no idea what to do with that...
 
Last edited:
Physics news on Phys.org
Hate to bump, but I have to. I have no idea whether I'm right or not, or whether I'm even on the right track.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top