Banked road (find the minimum radius)

  • Thread starter Thread starter farleyknight
  • Start date Start date
  • Tags Tags
    Minimum Radius
AI Thread Summary
The discussion focuses on calculating the minimum radius for a banked road, considering forces acting on a car. The user correctly identifies the need to account for centripetal force and friction when determining the radius. They derive the equation R = v^2 / (2 * mu_s * g) but face issues with their calculated value being rejected. A key insight is that the normal force increases when the car is in motion, enhancing the frictional force, which is crucial for maintaining the car's trajectory on the banked track. Understanding this relationship between normal force and friction is essential for solving the problem accurately.
farleyknight
Messages
143
Reaction score
0

Homework Statement



y2MPs.png


I've already answered the first part. The second part is what's giving me trouble.

Homework Equations



Here's how I solved #10:

Since the car is at rest, we're only worried about the force of friction and the parallel component of gravity:

F_f = F_g * sin(theta) = m * g * sin(theta)

Since F_f = mu_s * F_N = mu_s * F_g * cos(theta) = mu_s * m * g * cos(theta)

Then:

mu_s * m * g * cos(theta) = m * g * sin(theta)

Solving for theta, we get:

mu_s = tan(theta)

Or arctan(mu_s) = theta

The Attempt at a Solution



The second situation is different. We need to know the radius, and that is only involved when we have the centripetal force (F_C).

In this case, we are worried about having enough F_C to keep the car from veering off. Now the force of friction is equal, but going in the opposite direction (the same direction as the parallel component of gravity):

F_C * cos(theta) = F_f + F_g * sin(theta)

We already have F_f = mu_s * m * g * cos(theta), and F_g * sin(theta) = m * g * sin(theta). Also, since we're dealing with centripetal force, the proper equation for acceleration is:

m * a = m * (v^2 / R)

So that gives:

F_C * cos(theta) = m * (v^2 / R) = mu_s * m * g * cos(theta) + m * g * sin(theta)

Cancelling m and dividing by cos(theta):

(v^2 / R) = mu_s * g + g * tan(theta)

Since tan(theta) = mu_s:

(v^2 / R) = 2 * mu_s * g

This equation makes sense, to me, because previously we requires the parallel gravitation component to be equal (and opposite) to force of friction. Now we require that both of those forces act together to keep the car on the road, thus giving 2 * mu_s * g.

Solving for R:

R = v^2 / (2 * mu_s * g)

Which is dimensionally correct. Punching the values into my calculator gives:

v^2 / (2 * mu_s * g) = (50/3)^2 / (2 * 0.15 * 9.81) = 94.38592517

But this was rejected :(

Any idea where my mistake is at?
 
Physics news on Phys.org
farleyknight said:

Homework Statement



y2MPs.png


I've already answered the first part. The second part is what's giving me trouble.

Homework Equations



Here's how I solved #10:

Since the car is at rest, we're only worried about the force of friction and the parallel component of gravity:

F_f = F_g * sin(theta) = m * g * sin(theta)

Since F_f = mu_s * F_N = mu_s * F_g * cos(theta) = mu_s * m * g * cos(theta)

Then:

mu_s * m * g * cos(theta) = m * g * sin(theta)

Solving for theta, we get:

mu_s = tan(theta)

Or arctan(mu_s) = theta

The Attempt at a Solution



The second situation is different. We need to know the radius, and that is only involved when we have the centripetal force (F_C).

In this case, we are worried about having enough F_C to keep the car from veering off. Now the force of friction is equal, but going in the opposite direction (the same direction as the parallel component of gravity):

F_C * cos(theta) = F_f + F_g * sin(theta)

We already have F_f = mu_s * m * g * cos(theta), and F_g * sin(theta) = m * g * sin(theta). Also, since we're dealing with centripetal force, the proper equation for acceleration is:

m * a = m * (v^2 / R)

So that gives:

F_C * cos(theta) = m * (v^2 / R) = mu_s * m * g * cos(theta) + m * g * sin(theta)

Cancelling m and dividing by cos(theta):

(v^2 / R) = mu_s * g + g * tan(theta)

Since tan(theta) = mu_s:

(v^2 / R) = 2 * mu_s * g

This equation makes sense, to me, because previously we requires the parallel gravitation component to be equal (and opposite) to force of friction. Now we require that both of those forces act together to keep the car on the road, thus giving 2 * mu_s * g.

Solving for R:

R = v^2 / (2 * mu_s * g)

Which is dimensionally correct. Punching the values into my calculator gives:

v^2 / (2 * mu_s * g) = (50/3)^2 / (2 * 0.15 * 9.81) = 94.38592517

But this was rejected :(

Any idea where my mistake is at?


When a car is traveling around a banked track, the Normal reaction force is higher than when it is parked on the track [a similar thing happens when a car is driven through a dip rather than parked in a dip]. This increases the frictional force, an Fn is bigger.
 
Yep, that's what I needed. Thanks! :)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top