Beam (composed of two materials) Axial Loading

In summary, the conversation revolves around a problem in solid mechanics involving finding the deformation of a 2-material beam as a function of position. The first step is to find the supportive forces P1 and P2, which can be done by solving for the deformation in terms of these forces. However, there is confusion about the constancy of these forces and their distribution of the weight force downward acting on the beam. Superposition can be used to simplify the problem, with the limits of integration being from 0 to x. The conversation also delves into a simplified version of the problem with only one material, and explores different scenarios for solving the deformation.
  • #1
Xaspire88
100
0
Hi

Im trying to help a friend of mine out with this problem he has in a solid mechanics class he is taking, but it has been awhile since I took that course so i was hoping you guys could help me help him :)

Here is the problem he gave me.

Beam-Axialloading.jpg


in that image p1 p2 and E1 E2 are the density and Youngs modulus respectively

So what we are needing to find is the deformation of the 2 material beam as a function of postion (x). He said his prof. instructed him to first find the 'supportive' forces P1 P2 and then solve for the deformation in terms of those. Since this beam is fully constrained we know that the total deformation will be zero (0) and that P1+P2= W where W is equal to the weight force downward acting on the entire beam. Where I have a hard time is knowing how to solve for these P1 & P2 forces, with the equations:

1: P1 + P2 = W
2: 0=(deformation part 1)+(deformation part 2)

first since when I make my 'cuts' in region 1 and 2 to solve for the deformation in that portion of the beam I have another force say p(x) which is dependent on those other forces.

Any insight, helpful links would be appreciated. I know you guys used to help me out with my HW so hopefully you can help me on this. Thanks in advance.
 
Physics news on Phys.org
  • #2
Some thoughts that I need clarifying.

1. In the sketch in my last post are P1 and P2 constant through out the beam? Like I said it's been a while since I have studied this material, but I want to say yes.

2. If they are constant, do P1 and P2 share the load W(weight of the beam) equally? Leading me to: Are P1 and P2 = 1/2 W?

Edit:
I fear I may of made a huge mistake on those pages I posted so I took them down.

Equations I used based off of above assumptions.

1. P1=P2=1/2W(total weight)=1/2(p1gAL1+p2gaL2)

2. In region 1 p(x)= P2-w(x)=1/2Wt-w(x)=gA[1/2(p1L1+p2L2)-p1x]

3. In region 2 p(x)= P2-w(x)=1/2Wt-w(x)=gA[1/2(p1L1+p2L2)-p2x]

then using these p(x) solving for[tex]\delta[/tex] in each region 1 & 2

Region 1: limits of integration from 0 to x

[tex]\delta[/tex](x)=(gx)/(2E1)[(p1L1+p2L2)-p1x]


Region 2: limits of integration from (0 to L1) + (L1 to x)


[tex]\delta[/tex](x)=(gL1)/(2E1)[(p1L1+p2L2)-p1L1]+g/(2E2)[[(p1L1+p2L2)x-p2x^2]-[(p1L1+p2L2)L1-p2L1^2]]
 
Last edited:
  • #3
Xaspire88: I will herein change your reaction forces P1 and P2 at the fixed supports to R1 and R2, to avoid confusion. And like you, I will use p1 and p2 for the densities.

No, the axial force throughout the beam is not constant. You made a mistake by assuming R1 = R2.

When you make your section cut in region 1 (with the free body below the cut), you can see the upward force acting on the section cut is F1(x) = p1*g*A*x - R1, for 0 ≤ x ≤ L1. And when you make your section cut in region 2 (with the free body below the cut), you can see the upward force acting on the section cut is F2(x) = p1*g*A*L1 + p2*g*A*(x - L1) - R1, for L1 < x ≤ (L1 + L2).

The deformation in region 1 is delta1(x) = integral{[F1(x)/(E1*A)]*dx}, integrated from x = 0 to x. The deformation in region 2 is delta2(x) = delta1(L1) + integral{[F2(x)/(E2*A)]*dx}, integrated from x = L1 to x.

Now, to find R1, we know delta2(L1 + L2) = 0, right? Therefore, solve delta2(L1 + L2) = 0 for R1. Afterwards, you have delta(x) = {delta1(x) for 0 ≤ x ≤ L1, delta2(x) for L1 < x ≤ (L1 + L2)}.
 

Attachments

  • rod-axial-loading-01.png
    rod-axial-loading-01.png
    1.8 KB · Views: 653
  • #4
Here is a simplified version of this problem.

th_SimplifiedProblem.jpg


In this version we just have one material.

Can I do what I have done in that image?

Since total deformation of the beam is 0 can we think of it as the beam first being compressed by its own weight, and then be extended by the upward force F1?

Also the weight force varies over the object but does F1 in this case? Should my limits of integration for F1 be from 0 -> x?
 
Last edited:
  • #5
To answer your second question in post 4, yes, you can use superposition to solve that problem. To answer your third question, if you apply only an end force to the rod, but you apply no other applied load (not even gravity), then the force in the rod is constant along the length of the rod. Yes, the limits of integration should be 0 to x.

In your post 4 image, delta_w(x) + delta_F1 = 0 is incorrect, and should instead be delta_w(L) + delta_F1 = 0. Otherwise, the image looks OK.
 
  • #6
*Edit: "To answer your third question, if you apply only an end force to the rod, but you apply no other applied load (not even gravity), then the force in the rod is constant along the length of the rod. Yes, the limits of integration should be 0 to x." You say the force in the rod is constant along the length of the rod but if I integrate from 0->x then i get a F1 as a function of x... so then it would be dependent upon the position within the rod?*

*First Scenario delta_w integrated from 0->L and delta_F1 integrated from 0->x:*

So my limits of integration for my delta_w were wrong and should instead be 0->L in which case:

delta_F1= delta_w(L)

(F1*x)/(A*E)=(p*g*L^2)/(2*E)

and

F1=(p*g*A*L^2)/2x

then from this make a cut in the beam and there will be a p(x) upward on the bottom portion of the beam below the cut p(x)= w(of the top portion) - F1 = p*g*A(L-x) - (p*g*A*L^2)/x

p(x)= p*g*A[(L-x)-(L^2)/2x]

and my delta_x(deformation as a function of x for the whole beam) =

[tex]\int[/tex](p*g*A[(L-x)-(L^2)/2x])/(A*E)dx from 0 -> x

works out to

delta_x = (p*g[L*x-(x^2)/2-(L^2)/2*ln(x)])/E

*Second Scenario delta_w integrated from 0->L and delta_F1 integrated from 0->L*

Then F1 = (p*g*A*L)/2

and total deformation:

delta_x= (p*g(L*x-x^2))/2EI get the feeling I am making this way harder than it actually is and it is driving me crazy
 
Last edited:
  • #7
In the meantime, post 3 gives you a clear solution to your question in post 1.
 
  • #8
The more I work on this the more confused I get. For now I just want to be able to clearly understand the simple one material model, and have an answer in front of me that I don't have to second guess. ugh.
 
  • #9
OK, for a simple one-material model, use post 3, letting L2 = 0. This transforms the solution to a one-material model. Therefore, you already have a clear solution, given in post 3, even for the one-material model.
 

What is a beam composed of two materials?

A beam composed of two materials is a structural element that is made up of two different materials, typically metal or wood. The two materials are joined together to form a single beam, with each material providing different properties and characteristics to the overall structure.

What is axial loading?

Axial loading is a type of structural loading that acts along the axis of a beam or column. It is a compressive force that is applied to the ends of the beam, causing it to bend or deform. Axial loading can occur due to the weight of the structure or any external forces acting on it.

What are the effects of axial loading on a beam?

Axial loading can cause the beam to bend or deform, depending on the magnitude of the applied force. This can result in stress and strain on the beam, which can potentially lead to failure if the beam is unable to withstand the applied force. The effects of axial loading can be mitigated by using appropriate materials and design techniques.

What factors affect the strength of a beam under axial loading?

The strength of a beam under axial loading is affected by several factors, including the material properties of the beam, the dimensions of the beam, and the type of loading applied. Additionally, the method of joining the two materials together can also impact the strength of the beam.

How can engineers optimize beam design for axial loading?

To optimize beam design for axial loading, engineers must consider the material properties, beam dimensions, and type of loading in their design. They must also select appropriate materials and joining methods to ensure the beam can withstand the expected axial loading. Finite element analysis and other design techniques can also be used to optimize beam design for axial loading.

Similar threads

  • Engineering and Comp Sci Homework Help
Replies
6
Views
872
  • Engineering and Comp Sci Homework Help
Replies
4
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
32
Views
3K
  • Engineering and Comp Sci Homework Help
Replies
7
Views
6K
  • Engineering and Comp Sci Homework Help
Replies
5
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
6
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
2K
Back
Top