Engineer_Phil: For your given problem in post 11, I assumed a 6.0 mm fillet radius between the cantilever plate and the wall plate, and an integral connection between the cantilever plate and wall plate (for simplicity), because you have not given us any details regarding how you modeled it. I now obtained more accurate stress results, as follows.
sigma1 = C*(1 - h2/h1)*L*V/(b1*t1^2)
(1) For the maximum von Mises stress on the back of the wall plate, C is currently C = 3.29. I.e., sigma1 = 218 MPa, which does not exceed the wall plate tensile yield strength, Sty = 262 MPa. (Therefore, we see that the approach by PhanthomJay is off by only -8.8 % for stress on the back of the wall plate.)
(2) For the maximum von Mises stress on the front of the wall plate, just above the edge of the cantilever plate upper fillet, C is currently C = 4.56. I.e., sigma1 = 302 MPa, which exceeds the wall plate tensile yield strength, Sty.
(3) The maximum von Mises stress in the middle of the fillet (not on the wall plate), at the upper left or right corner where the cantilever plate connects to the wall plate (where two fillets intersect, forming a curved, concave, sharp edge), there is a tiny spot where C reaches C = 8.67. I.e., sigma1 = 574 MPa. This tiny spot will reach the tensile yield strength, then redistribute; therefore, it is probably negligible, for static (noncyclic) loading.
(4) The deflection of your cantilever tip is y = 1.12 mm, downward.
(5) Here are the detailed stresses corresponding to items 1 and 2. For the in-plane, x- and y-direction normal stress on the back of the wall plate, C = -2.84 in the x direction, and C = -3.61 in the y direction. I.e., sigma_x = -188 MPa, and sigma_y = -239 MPa. (The y direction is vertical.)
(6) For the in-plane, x- and y-direction normal stress on the front of the wall plate, C = 3.54 in the x direction, and C = 5.15 in the y direction. I.e., sigma_x = 234 MPa, and sigma_y = 341 MPa.
The above stress results indicate that your wall plate is currently overstressed, and that you need to add stiffeners. Let us know if you want ideas regarding different methods of adding stiffeners, and then someone might be able to show you. Another benefit of adding stiffeners is, it might make the connection easier to analyze using FEA. Your current design is very difficult to analyze using FEA, and is virtually nonexistent in textbooks.