Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Bearing end play

  1. Jan 23, 2006 #1

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    Can anyone think of any reasons why I should not be concerned about a seemingly large amount of end play in a bearing?

    The bearing is a twin taper roller bearing with a split inner race. It's carrying a mild, pretty steady axial load, and a moderate, pretty steady radial load, at a moderate, steady speed. The end float is small and nothing for concern, but I'm a bit worried about the amount of end play, - you can see the attached wheel wobbling when you grasp and 'rock' it from side to side. Surely this is causing edge loading on the rollers? Any situations where it might be expected, or no cause for concern?
     
  2. jcsd
  3. Jan 23, 2006 #2

    Danger

    User Avatar
    Gold Member

    You're the engineer, not me, but I'd be concerned about anything that wasn't within the design specs. If there's more end play than there's supposed to be, something's wrong. I also don't like the idea of a wheel 'wobbling', regardless of what its purpose is. That has to be feeding excess load forces back into the bearing. Seems like a degenerative feedback loop to me.
     
    Last edited: Jan 23, 2006
  4. Jan 23, 2006 #3
    Tapered roller bearings are designed to operate with a specific preload that keeps them from having any end play at all. If you do have end play, then you are correct in that the rollers will end up deteriorating much faster than their design life would indicate, usually on their large diameter where the loads and speeds are greatest. Doesn't the assembly have some method to take-up and preload the bearings ?

    Michael E.
     
  5. Jan 23, 2006 #4
    if you can i suggest taking a vibration reading of the bearing assembly in the axial direction
    you can then accurately gauge what is failing within the bearing
    be it a race, cage, or ball itself
    is it a drive end or off end?
    direct drive or attached to a sheave of sorts?
     
  6. Jan 24, 2006 #5

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    Thanks for the insight boys and girls.

    I was wondering whether the clearance was to allow an oil film to be established when moving, hydrodynamic lubrication stylee.

    Michael - yeah, there's quite a neat method of preload. The inner race is in two self-opposing halves, with a clearance between them. The inner race is loaded by an end plate, which pushes the two halves together, eliminating the clearance, which sets up the preloading condition. However, all our measurements show that the cast mounting is to drawing, and that the clearance is as it should be. It's a puzzle.

    Shawn, I might give the vibration measurements a go, how would different failures manifest themselves in axial measurements? This play is present on brand new components, it's not a failed bearing as such. It's an off end, as you put it, and direct.
     
  7. Jan 24, 2006 #6

    FredGarvin

    User Avatar
    Science Advisor

    Brews,
    You're using a lot of "relative" terms there...My idea of low speed is probably not the same as yours. A large amount of endplay (whatever that amount is) could be a design requirement. How much endplay are we talking here? .005", .010", .100"???? Oh crud, you're in metric...;-)

    Personally I don't like throwing ideas out about bearing configurations without knowing all of the parameters. Does the bearing have to experience a larger thermal gradient by chance?

    I would check to make sure you have the right tolerance grade bearing. The tolerances will open up for cheaper grades. Also, is the bearing new or being reused? Was it inspected prior to use? Have you inspected it yet? You've checked the housing, but how about the shaft fits? Also, there is ALWAYS the possibility that the print is wrong. It wouldn't be the first time, especially if it is a prototype or low production run component.

    The problem with vibration analyzing is that you have to have an idea as to what you are looking for. What good will knowing that you are seeing at 2 ips at ball pass frequency unless you have some kind of baseline to compare it to? None (unless you have a good feel for things in this area). Once you have that base line, you can pick up quite a lot of problems, especially in bearings.

    One thing you could look for, which sometimes manifests itself (more for spherical roller bearings) is the presence of sidebands about ball pass frequency when the bearing is getting ready to fail. Here's a pretty good article about looking at the vibration analysis side of a bearing failure:

    http://www.maintenanceworld.com/Articles/DLIEngineering/BearingWearExample1.pdf

    Make sure you check out the easy things first. Make sure you have the right bearing set. Make sure it's installed properly (i.e. preloaded properly) and make sure someone didn't pull a bonehead mistake anywhere else. Depending on what's going on, it may be easiest to just get a new one, install it and see if the problem goes away.
     
  8. Jan 25, 2006 #7

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    Ha, I knew someone would say that, and I was almost certain it'd be you! Cheers anyway lad!

    I can't give too many specifics, but the speeds are 1500-2000 rpm. I haven't measured the endplay myself, but it's somewhere between 0.1 and 0.25mm (depending on which sample is used). In an identical application on a different component (different bearing arrangement), there's no noticable end play at all. There's no thermal gradient at all. This isn't just on one set of bearings, it's on lots, across different batches. The tolerance is as it should be, the bearings are brand new, and it's being seen on lots of samples, it's not just one batch. I just can't seem to find any justification (in terms of design intent) why there should be any play, that's what's bugging me, and I just want to be able to rule it out as a potential cause of failure. Anyway, it's on hold for the time being...!
     
  9. Jan 25, 2006 #8
    be warned i am a senior in mech. engineering
    and i have been interning for 9 months now doing vibration analysis on rotating machinery
    so you were warned...student and intern
    but from what i have picked up most of the rolling element bearings i have seen how up at the following frequencies with sidebands sometimes
    Inner Race >4x motor
    Outer Race around 3x motor
    Ball Spin around 2x motor
    Cage .3 to .4 x motor
    and we classify bearing alert levels around .005 ips depending on the machine size and design.

    are they pressure fitted bearings?
    hope that could be of some help
     
  10. Jan 25, 2006 #9

    Danger

    User Avatar
    Gold Member

    Sorry to complicate the issue here, Brewski, but I don't quite understand your description of the set-up. The term 'twin taper' is new to me. Does this mean that there are 2 sets of rollers at different orientations, or that the rollers themselves are tapered as well as not being parallel, or...?
    Also, I've been assuming that your relating of the split race means that it's in 2 semi-troughs like a pea pod (but circular), but then I got to wondering if you meant split longitudinally like a crank bushing.
    In any event, what crossed my mind was the possibility that there might be some mismatch between the 2 halves, or between one or both of the halves and the rollers. If that were the case, your preload might not be having the desired effect even if it's properly calibrated. A long-shot, I know, but... possible?
     
  11. Jan 25, 2006 #10

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    Two sets of tapered rollers, sitting at an angle to the axis. The sets face each other in opposing directions. The outer race is one ring, the inner race is two separate rings, which are pushed together in order to close the gap and set up the preload.

    There's no mismatch between the two halves, they're part of one bearing unit. As far as I can tell, this play is meant to be there, and it's not overly worrying anyone, but I want to know what purpose it serves, and if it really is supposed to be there!
     
  12. Jan 25, 2006 #11
    Danger,
    Here's a typical picture of a split inner race tapered roller bearing from Timken's site. The inner races are tightened with a preload in order to remove all play from this assembly. If the assembly will receive significant thermal expansion, then the lubricant will need to be of a particular type, (oil and not grease), and in the case of a high speed spindle the lubricant will need to be circulated and cooled by some means. Generally the preload is such that moderate thermal expansion just increases the preload slightly.

    In this case the problem seems to be that the assembly has no preload and I would suspect that the end plate mentioned as a method of preloading the assembly is missing a part. These assemblies often use a wave like washer, belleville spring or even just a flat precision washer to give the proper preload. If it's missing, then you get axial play and "wobble" which will cause premature failure. The failure shows up as initial pitting at the most highly loaded spots followed by rapid failure as the vibrations become more severe and the bearing finally gives up the ghost and seizes or leaves entirely. This can be spectacular if it happens in the vehicle that you're riding in, ( I've had this happen and it sure does stop you fast !)
     

    Attached Files:

  13. Jan 25, 2006 #12

    Danger

    User Avatar
    Gold Member

    Okay, I've got it now. Thanks muchly for the picture, Michael; it clarified everything. And yeah, a buddy of mine burned out a wheel bearing several years ago. It heated up so badly that the spindle sheared off.
     
  14. Jan 26, 2006 #13

    FredGarvin

    User Avatar
    Science Advisor

    I can't say that I have ever seen a bearing that uses the inner race to set up the preload like you are mentioning. I have to agree with Michael and say that it sounds first and foremost that there is nothing keeping this entire assembly preloaded when there are no operational loads imposed. Is there any way you can give us some more details on the actual installation?


    You're a lot smarter than Danger says you are, ya know! :tongue2:
     
  15. Jan 26, 2006 #14

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    Michael, that is exactly like the bearing I'm talking about, thanks!

    The problem is, (and I'm looking into this further now!), the inner races are being pressed up against each other, and the play still seems to be present. There's no thermal element to this problem.

    Might post more when I find out more, but are we agreed that there isn't a widely known reason why this play is intentionally there?
     
  16. Jan 26, 2006 #15

    Danger

    User Avatar
    Gold Member

    I'm agreed, but that's just 'cause we're buds. I don't really know what I'm talking about.
     
  17. Jan 26, 2006 #16

    FredGarvin

    User Avatar
    Science Advisor

    I want a cross section.....pronto.
     
  18. Jan 26, 2006 #17

    Danger

    User Avatar
    Gold Member

    Just one more wee question: why on Earth would anybody bother making something like that anyhow? What's the point of having tapered bearings if the shaft that you're rotating is straight? :confused:
     
  19. Jan 26, 2006 #18

    FredGarvin

    User Avatar
    Science Advisor

    In a nutshell, they are a great comprimise for carrying a large radial and axial load in one bearing.

    Straightness of a shaft relates to vibration, which will lead to increased loads, but the straightness is relatively small in comparrison to the operating loads some installations will see due to other forces present.

    Really, all shafts are "straight" but not perfectly so.
     
  20. Jan 26, 2006 #19

    Danger

    User Avatar
    Gold Member

    I should have been a bit more specific in the wording of my question. While I realize that tapered rollers in general are used for combined thrust/rotary applications, having two opposing ones seems weird. If there's a preload, then why not just one angle of taper? Two would suggest to me that the shaft is expected to oscillate longitudinally.
    Since Brewnog said that there was only mild axial force, I figured that ball or straight rollers would be sufficient.
    The other application that I know of for them is when the shaft is conical rather than cylindrical, which is what I meant by 'straight'. I wasn't referring to the 'trueness' of the shaft. Sorry for the confusion.
     
  21. Jan 27, 2006 #20

    brewnog

    User Avatar
    Science Advisor
    Gold Member

    I was wondering why they'd bothered to use tapers too. The same part on a much beefier engine has one set of ball bearings and one set of rollers, but they're spread over a larger distance so there's no play at all.


    I did you a lovely cross section Fred. You'd never guess I've been sat in front of Pro E for the last 5 hours would you?!

    [​IMG]

    Arrows are where you squish the inner races together by a ring or something. Note that it's not just the races that are tapered, the rollers are too. It's pretty neat really, I'd not seen it before.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Bearing end play
  1. Axial Play/End play (Replies: 1)

  2. Strange bearings (Replies: 1)

  3. Bearing preload (Replies: 4)

  4. Bearings and bushings. (Replies: 13)

  5. Bearing Stresses (Replies: 5)

Loading...