Biomechanics problem. Have no idea

AI Thread Summary
To determine the joint reaction force compression on the bone during shoulder abduction, a free body diagram should be constructed, illustrating the forces acting on the arm. Given the parameters, including the mass of the arm and hand, the force exerted by the middle deltoid, and the force from the theraband, the net forces can be calculated. The joint reaction force can be derived by considering the equilibrium of forces and the moments around the shoulder joint. The provided values, such as abduction angle and acceleration, are essential for accurate calculations. A thorough analysis will yield the joint reaction force necessary for understanding biomechanics in this context.
448060061
Messages
2
Reaction score
0
humerus.png
8.png

Shoulder abduction = 15°
Abduction acceleration = 50/rad/s/s
Abduction velocity = 20 rad/s
Radius of gyration and COM location from joint = 25cm
Mass of hand + Arm = 8 kg
Force of middle deltoid =400N
Middle deltoid only active muscle
Force of theraband = 70N
Middle deltoid insertion = 15°
Φ=90

The question is: solve for joint reaction force compression on the bone.
Also draw an appropriate free body diagram for this problem
 
Physics news on Phys.org
Please help ! thanks
 
You need to show some attempt. Start with a free body diagram.
Also, most readers on this forum won't know all these technical anatomy terms. An abstract force diagram will help us.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top