BJT transistor analysis: common emitter confusion

AI Thread Summary
The discussion centers on confusion regarding BJT transistor operation in a common emitter configuration, specifically about calculating collector current. The user calculated a collector current of 5.28 A based on a β value of 210 and a base current of 25.15 mA, but found a significantly lower value in simulation. It was pointed out that the BJT may not be operating in the active region due to limitations imposed by the collector resistor and supply voltage, which restrict the maximum collector current to approximately 27 mA. This indicates the BJT is likely in saturation, where the relationship between collector and base current (Ic = β * Ib) no longer applies. The discussion emphasizes the importance of understanding circuit constraints when analyzing transistor behavior.
thegreengineer
Messages
54
Reaction score
3
Recently I started studying semiconductors and analogue electronics. First I studied the diode and its I-V characteristics and analysis in DC circuits, as well as in AC circuits.
Now I started with BJT transistors. I was explained that transistors act as electronic switches. My problem is not on how transistors work. For explaining this further consider this diagram of a transistor in common emitter configuration.
https://scontent-dft4-2.xx.fbcdn.net/v/t1.0-9/14067588_1769551276662742_1192159594276821135_n.jpg?oh=5b8e91a0eddc348493fad870a70a27d3&oe=58597241
In this case I got two DC voltage sources of 9 V each, the two 330 Ω resistors, and a NPN BJT transistor. The transistor has a β=210.
According to what I was taught, β represents the current gain in common emitter and it ranges from 50 to 400 (it is a dimensionless quantity). The current gain represents the ratio of output current divided by input current. In this configuration, the emitter is common to the input and output sides (connected to ground). The input is the one p-n junction that is direct biased; whereas the output is the other p-n junction that is reverse biased. So, according to this, the input current is the base current and the output current is the collector current. So using the gain (β) definition, we have:
\beta =\frac{I_{C}}{I_{B}}.
I previously said that β=210. So if I replace β in the equation and I isolate for collector current I get that the collector current is 210 times the base current.

So let's suppose that the I'm being asked to calculate the collector current considering the circuit above. What I did was the following, since I don't know base current, I don't know collector current either. So what I did is performing KVL (Kirchoff's Voltage Law) on the mesh formed by the 9 V battery, the 330 Ω resistor (both connected in series to the base) and the p-n junction created by the base-emitter junction. This last one, as I was told, resembles a silicon diode, therefore there's going to be a voltage drop of 0.7 V approximately. Doing this I get:

\sum V=9-330(I_{B})-0.7=0

When I isolate for base current, I get:
I_{B}=0.02515 measured in Amps.

Remember I said that β=210, so using the previous definition for β I get:
I_{C}=\beta I_{B}=(210)0.02515=5.28 measured in Amps.

When I checked back the circuit and ran the simulator I got the base current correctly:
https://scontent-dft4-2.xx.fbcdn.net/v/t1.0-9/14079477_1769566206661249_3855909599223329391_n.jpg?oh=7a3d57d997c320e4f5a144cdd2fadada&oe=58549EF2
Since 0.02515 A= 25.15 mA.
However, when I checked the collector current I got a very different result, way less the current I calculated:
https://scontent-dft4-2.xx.fbcdn.net/v/t1.0-9/14051724_1769566949994508_7493816127739306855_n.jpg?oh=ae617ad533c50ad61ab5510d374d22a0&oe=5847C9CE
My question is, if the result is not consistent, then that means I did something wrong, what is it?
 
Engineering news on Phys.org
Look at the collector resistor and battery. Why would you expect 5+ amps through that resistor? What is the voltage across the resistor in the simulation given 27.24mA? Where does this voltage come from?

BoB
 
Marcus - you simply have assumed that the BJT would operate in the so-called "active" amplifying region (where the beta-value may be used).. But that is not the case.
Do you know why not?.
 
No. Why not?
 
Notice that Rc resistor and DC collector voltage (Vcc) will limit the maximum current that can flow in collector. The maximum collector that can flow in this circuit is Ic_max = 9V/330Ω = 0.027A = 27mA. So in this case the BJT is in saturation region and Ic = β * Ib do not hold anymore.
The BJT is just like a water tap. What is happening is that the base current is "controlling" the amount of current that Vcc supplies (can supply). Try increase in simulation Vcc voltage (2000V) or reduce Rc resistor value or increase the RB value .
 
For Ic=5.28A, the voltage drop at the collector resistor can be calculated (theoretically) to Vc=5.28*330=1742 Volt!
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top