Boltzmann Distribution: Calculate Probability of Particle in 4 States

shayan825
Messages
16
Reaction score
0
A certain particle is interacting with a reservoir at 500 k and can be in any four possible states. The ground state has energy 3.1 eV and three excited states all have the same energy. what is the probability that the particle is in ground state? what is the probability that the particle is in a particular excited state? what is the probability that it is in a state of energy -3.0 eV? using Boltzmann distribution

I use the formula (e^E/kT)/sum of e^E/kT but get a wrong answer.
 
Physics news on Phys.org
There is a factor of -1 missing from the exponent. Are you also including the degeneracy in the sum?
 
tman12321 said:
There is a factor of -1 missing from the exponent. Are you also including the degeneracy in the sum?

yes, for the first question(the probability that the particle is in the ground state) I get 0.032. e^(-3.1/500k) / e^(-3.1/500k) + 3e^(-3.0/500k). The answer should be 0.7725
 
Why would 3.1 eV be the energy of the ground state, and -3.0 eV be the energy of the excited state? Is it supposed to be the other way around?
 
tman12321 said:
Why would 3.1 eV be the energy of the ground state, and -3.0 eV be the energy of the excited state? Is it supposed to be the other way around?[/QUOTwell,

that's what the book says..ya
 
There seem to be a couple of problems here:
(1) The energy of the ground state should not be greater than the energy of an excited state. The ground state should have the lowest energy. I guess you meant that the ground state is -3.1 eV and the excited state is -3.0 eV, i.e. a 0.1 eV difference. (You were missing this minus sign before).
(2) The Boltzmann factor is Exp[-ΔE/kT], not Exp[ΔE/kT], where ΔE > 0.
(3) You seem to be mixing the usage of k and K. K denotes a temperature in Kelvin and is a unit, and k is the Boltzmann constant, a number. You say that the reservoir is at 500 k, when I think you meant 500 K. You then divide the energies in eV by 500k, but it is unclear whether you think this means 500*k or 500 K. (500*k would be right assuming you're using the value of k in eV/K).

It will be easiest, from a computational standpoint, if you redefine -3.1 eV to be the zero of the energy . Then the ground state has energy 0 eV, and the excited states have energy 0.1 eV.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top