Boltzmann Distribution: Calculate Probability of Particle in 4 States

AI Thread Summary
The discussion centers on calculating the probabilities of a particle in four states using the Boltzmann distribution at a temperature of 500 K. The ground state is incorrectly assigned an energy of 3.1 eV, while the excited states are at -3.0 eV, leading to confusion since the ground state should have the lowest energy. Participants highlight the need for the correct application of the Boltzmann factor, which should be Exp[-ΔE/kT], and clarify the distinction between the Boltzmann constant (k) and temperature in Kelvin (K). It is suggested to redefine the energy scale for easier calculations, setting the ground state to 0 eV. Correcting these points is essential for accurate probability calculations.
shayan825
Messages
16
Reaction score
0
A certain particle is interacting with a reservoir at 500 k and can be in any four possible states. The ground state has energy 3.1 eV and three excited states all have the same energy. what is the probability that the particle is in ground state? what is the probability that the particle is in a particular excited state? what is the probability that it is in a state of energy -3.0 eV? using Boltzmann distribution

I use the formula (e^E/kT)/sum of e^E/kT but get a wrong answer.
 
Physics news on Phys.org
There is a factor of -1 missing from the exponent. Are you also including the degeneracy in the sum?
 
tman12321 said:
There is a factor of -1 missing from the exponent. Are you also including the degeneracy in the sum?

yes, for the first question(the probability that the particle is in the ground state) I get 0.032. e^(-3.1/500k) / e^(-3.1/500k) + 3e^(-3.0/500k). The answer should be 0.7725
 
Why would 3.1 eV be the energy of the ground state, and -3.0 eV be the energy of the excited state? Is it supposed to be the other way around?
 
tman12321 said:
Why would 3.1 eV be the energy of the ground state, and -3.0 eV be the energy of the excited state? Is it supposed to be the other way around?[/QUOTwell,

that's what the book says..ya
 
There seem to be a couple of problems here:
(1) The energy of the ground state should not be greater than the energy of an excited state. The ground state should have the lowest energy. I guess you meant that the ground state is -3.1 eV and the excited state is -3.0 eV, i.e. a 0.1 eV difference. (You were missing this minus sign before).
(2) The Boltzmann factor is Exp[-ΔE/kT], not Exp[ΔE/kT], where ΔE > 0.
(3) You seem to be mixing the usage of k and K. K denotes a temperature in Kelvin and is a unit, and k is the Boltzmann constant, a number. You say that the reservoir is at 500 k, when I think you meant 500 K. You then divide the energies in eV by 500k, but it is unclear whether you think this means 500*k or 500 K. (500*k would be right assuming you're using the value of k in eV/K).

It will be easiest, from a computational standpoint, if you redefine -3.1 eV to be the zero of the energy . Then the ground state has energy 0 eV, and the excited states have energy 0.1 eV.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top