jostpuur
- 2,112
- 19
Suppose we have some model for some system, and that model has given us a sequence \mathcal{E}_1,\mathcal{E}_2,\mathcal{E}_3,\ldots, whose values are interpreted as the energy levels of the system. Denoting the energy levels slightly redundantly for future modification soon below, we state that the energy levels are
<br /> E_1=\mathcal{E}_1<br />
<br /> E_2=\mathcal{E}_2<br />
<br /> E_3=\mathcal{E}_3<br />
\vdots
The probabilities defined by the Boltzmann distribution under a temperature T will be
<br /> p(1) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_3}{T}}+ \cdots<br />
Suppose we find out that the model was only an approximation of a more accurate model, and according to the new more accurate model the energy values are going to be \mathcal{E}_n and \mathcal{E}_{2n}+\epsilon with some small positive epsilon. Now the energy levels are
<br /> E_1 = \mathcal{E}_1<br />
<br /> E_2 = \mathcal{E}_2<br />
<br /> E_3 = \mathcal{E}_2+ \epsilon<br />
<br /> E_4 = \mathcal{E}_3<br />
<br /> E_5 = \mathcal{E}_4<br />
<br /> E_6 = \mathcal{E}_4 + \epsilon<br />
<br /> E_7 = \mathcal{E}_5<br />
<br /> \vdots<br />
Now the probabilities defined by
<br /> p(n) = \frac{1}{Z(T)}e^{-\frac{E_n}{T}}<br />
turn out to be
<br /> p(1) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_2+\epsilon}{T}}<br />
<br /> p(4) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> p(5) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_4}{T}}<br />
<br /> p(6) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_4+\epsilon}{T}}<br />
<br /> p(7) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_5}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_2 + \epsilon}{T}} + e^{-\frac{\mathcal{E}_3}{T}} + e^{-\frac{\mathcal{E}_4}{T}} + e^{-\frac{\mathcal{E}_4 + \epsilon}{T}} + e^{-\frac{\mathcal{E}_5}{T}} + \cdots<br />
Suppose we decide that the epsilon is so small that it has not much significance, and we might as well simplify the formulas by taking the limit \epsilon\to 0. This limit is going to give us a new probability distribution
<br /> p(1) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{2}{Z(T)}e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> p(4) = \frac{2}{Z(T)}e^{-\frac{\mathcal{E}_4}{T}}<br />
<br /> p(5) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_5}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + 2e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_3}{T}} + 2e^{-\frac{\mathcal{E}_4}{T}} + e^{-\frac{\mathcal{E}_5}{T}} + \cdots<br />
Now we have two different probability distributions for the case \epsilon = 0. Is one of them right, and the other one wrong? Which way around would be the right answer?
<br /> E_1=\mathcal{E}_1<br />
<br /> E_2=\mathcal{E}_2<br />
<br /> E_3=\mathcal{E}_3<br />
\vdots
The probabilities defined by the Boltzmann distribution under a temperature T will be
<br /> p(1) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)} e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_3}{T}}+ \cdots<br />
Suppose we find out that the model was only an approximation of a more accurate model, and according to the new more accurate model the energy values are going to be \mathcal{E}_n and \mathcal{E}_{2n}+\epsilon with some small positive epsilon. Now the energy levels are
<br /> E_1 = \mathcal{E}_1<br />
<br /> E_2 = \mathcal{E}_2<br />
<br /> E_3 = \mathcal{E}_2+ \epsilon<br />
<br /> E_4 = \mathcal{E}_3<br />
<br /> E_5 = \mathcal{E}_4<br />
<br /> E_6 = \mathcal{E}_4 + \epsilon<br />
<br /> E_7 = \mathcal{E}_5<br />
<br /> \vdots<br />
Now the probabilities defined by
<br /> p(n) = \frac{1}{Z(T)}e^{-\frac{E_n}{T}}<br />
turn out to be
<br /> p(1) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_2+\epsilon}{T}}<br />
<br /> p(4) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> p(5) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_4}{T}}<br />
<br /> p(6) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_4+\epsilon}{T}}<br />
<br /> p(7) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_5}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_2 + \epsilon}{T}} + e^{-\frac{\mathcal{E}_3}{T}} + e^{-\frac{\mathcal{E}_4}{T}} + e^{-\frac{\mathcal{E}_4 + \epsilon}{T}} + e^{-\frac{\mathcal{E}_5}{T}} + \cdots<br />
Suppose we decide that the epsilon is so small that it has not much significance, and we might as well simplify the formulas by taking the limit \epsilon\to 0. This limit is going to give us a new probability distribution
<br /> p(1) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_1}{T}}<br />
<br /> p(2) = \frac{2}{Z(T)}e^{-\frac{\mathcal{E}_2}{T}}<br />
<br /> p(3) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_3}{T}}<br />
<br /> p(4) = \frac{2}{Z(T)}e^{-\frac{\mathcal{E}_4}{T}}<br />
<br /> p(5) = \frac{1}{Z(T)}e^{-\frac{\mathcal{E}_5}{T}}<br />
<br /> \vdots<br />
where the partition function is
<br /> Z(T) = e^{-\frac{\mathcal{E}_1}{T}} + 2e^{-\frac{\mathcal{E}_2}{T}} + e^{-\frac{\mathcal{E}_3}{T}} + 2e^{-\frac{\mathcal{E}_4}{T}} + e^{-\frac{\mathcal{E}_5}{T}} + \cdots<br />
Now we have two different probability distributions for the case \epsilon = 0. Is one of them right, and the other one wrong? Which way around would be the right answer?