A Bosonization Formula and its Effects on Fermion Number

Demystifier
Science Advisor
Insights Author
Messages
14,601
Reaction score
7,195
TL;DR Summary
Is the bosonization formula an operator identity?
Shankar, in the book "Quantum Field Theory and Condensed Matter", at page 328 writes the famous bosonization formula in the form
$$\psi_{\pm}(x)=\frac{1}{\sqrt{2\pi\alpha}} e^{\pm i \sqrt{4\pi} \phi_{\pm}(x)}$$
and then writes: "This is not an operator identity: no combination of boson operators can change the fermion number the way ψ can."
I don't understand this statement. ##\psi_{\pm}(x)## satisfies anticommutation relations, so why can't it change the fermion number the way ψ can?
 
Physics news on Phys.org
It must be understood in a weak sense (imposing proper boundary conditions), together with renormalization. The latter is in this case (1+1D) just done by normal ordering the exponential.
 
Last edited:
  • Like
Likes vanhees71 and Demystifier
A. Neumaier said:
It must be understood in a weak sense (imposing proper boundary conditions), together with renormalization. The latter is in this case (1+1D) just done by normal ordering.
If we studied bosonization on a lattice, so that the number of degrees of freedom was finite, could it be an operator identity in this case?
 
Demystifier said:
If we studied bosonization on a lattice, so that the number of degrees of freedom was finite, could it be an operator identity in this case?
If the mathematical arguments for the bosonization still go through on the lattice, yes. You'd need to check the derivation of the commutation rules.
 
  • Like
Likes Demystifier
A. Neumaier said:
If the mathematical arguments for the bosonization still go through on the lattice, yes.
So, assuming that it is so, the Shankar's claim would not longer be true?
 
Demystifier said:
So, assuming that it is so, the Shankar's claim would not longer be true?
The point of Shankar's argument is that one cannot sensibly exponentiate distributions, which quantum fields on a continuum are; the formula you quoted is strictly speaking only mnemonics for a complicated process.

But if a field is defined only at a finite number of points (e.g., on a bounded lattice) , the fields are functions, not distributions. Then there are no such problems, hence no associated claims.
 
  • Like
Likes vanhees71 and Demystifier
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top