- #1
- 42
- 16
- Homework Statement
- A steady current I flows down a long cylindrical wire of radius a. Assume that the wire has magnetic susceptibility, ##\chi_m##, and that the current is distributed in such a way that ##J## is proportional to ##s##, the distance from the wire axis. Determine the magnetic field B both inside and outside the wire. Calculate the bound bulk current density ##J_b## in the wire and bound surface current density ##K_b## on the surface of the wire, and show that the total bound bulk current is equal and opposite to the total bound surface current.
- Relevant Equations
- ##\vec H = \frac 1 \mu_0 \vec B - \vec M ##
##\vec M = \chi_m \vec H##
##\vec J_b = \vec \nabla \times \vec M##
##\vec K_b = \vec M \times \hat s##
Hi there, I've worked through most of this question but I'm stuck on the final part, showing that total bulk current ##I_B## is equal and opposite to total surface current ##I_S##. I calculated ##\vec H## the normal way I would if I was looking for ##\vec B## in an infinitely long cylindrical wire where ##\vec J## is proportional to ##s## and found:
##
\vec H =
\begin{cases}
I \frac {s^2} {2\pi a^3} & \text{inside} \\
I\frac 1 {2\pi s} & \text{outside }
\end{cases}
##
Then rearranging the relationships ##\vec H = \frac 1 \mu_0 \vec B - \vec M ## and ##\vec M = \chi_m \vec H## I got:
##\vec B = \mu_0 \vec H (1+ \chi_m)##
##\mu = (1 + \chi_m)##
Using this I found ##\vec B## inside and outside the wire to be:
##
\vec B =
\begin{cases}
\mu I \frac {s^2} {2\pi a^3} & \text{inside} \\
\mu_0 I\frac 1 {2\pi s} & \text{outside }
\end{cases}
##
Then using the two cross-products I found ##\vec J_b## and ##\vec K_b##:
##\vec J_b = \chi_m I \frac {3s} {2\pi a^3} \hat z##
##\vec K_b = -\chi_m I \frac 1 {2\pi a} \hat z##
Now I am unsure of the right way to find the total bulk current ##I_B## and surface current ##I_S##. I'd appreciate it if someone could point me in the right direction.
##
\vec H =
\begin{cases}
I \frac {s^2} {2\pi a^3} & \text{inside} \\
I\frac 1 {2\pi s} & \text{outside }
\end{cases}
##
Then rearranging the relationships ##\vec H = \frac 1 \mu_0 \vec B - \vec M ## and ##\vec M = \chi_m \vec H## I got:
##\vec B = \mu_0 \vec H (1+ \chi_m)##
##\mu = (1 + \chi_m)##
Using this I found ##\vec B## inside and outside the wire to be:
##
\vec B =
\begin{cases}
\mu I \frac {s^2} {2\pi a^3} & \text{inside} \\
\mu_0 I\frac 1 {2\pi s} & \text{outside }
\end{cases}
##
Then using the two cross-products I found ##\vec J_b## and ##\vec K_b##:
##\vec J_b = \chi_m I \frac {3s} {2\pi a^3} \hat z##
##\vec K_b = -\chi_m I \frac 1 {2\pi a} \hat z##
Now I am unsure of the right way to find the total bulk current ##I_B## and surface current ##I_S##. I'd appreciate it if someone could point me in the right direction.