.
The co-efficent of friction you ar using is too low..
The maximum braking force that a particular tire can generate is theoretically equal to the coefficient of friction of the tire-road interface multiplied by the amount of weight being supported by that corner of the car. For example, a tire supporting 500 pounds of vehicle weight with a peak tire-road coefficient of 0.8 (a typical street tire value) could generate, in theory, 400 pounds of braking force. Throw on a good race tire with a peak coefficient of 1.5, and the maximum rises to 750 pounds of braking force. More braking force means higher deceleration, so we again see the mathematical benefits of a sticky race tire.
On the other hand, if our race tire was now only supporting 300 pounds, the maximum force would drop from 750 pounds of braking force to 450 pounds of braking force – a reduction of 40%.
Since the amount of braking force generated by the tire is directionally proportional to the torque generated by the calipers, pads, and rotors, one could also say that reducing the weight on the tire reduces the maximum brake torque sustainable by that corner before lock-up occurs. In the example above, if an assumed 700 ft-lb. of brake torque is required to lock up a wheel supporting 500 pounds, then only 420 ft-lb. (a 40% reduction) would be required to lock up a wheel supporting 300 pounds of vehicle weight.
At first glance, one could surmise that in order to achieve perfect brake bias you could just:
1. Weigh the four corners of the car
2. Design the front and rear brake components to deliver torque in the same ratio as the front-to-rear weight distribution
3. Win races
In other words, for a rear-wheel-drive race car with 50/50 front/rear weight distribution it would appear that the front and rear brakes would need to generate the same amount of torque. At the same time, it would look like a production-based front-wheel-drive car with a 60/40 front/rear weight distribution would need front brakes with 50% more output (torque capability) than the rears because of the extra weight being supported by the nose of the car.
Like most things in life though, calculating brake bias is not as simple as it may appear at first glance. Designing a braking system to these static conditions would neglect the second most important factor in the brake bias equation – the effect of dynamic weight transfer during braking.
Like the corner carvers, the brake guys are always looking to achieve maximum accelerations, but of course these accelerations are now really decelerations. Stopping distance is everything and every single foot counts. Remember: outbraking your opponent by just two feet every lap for a twenty lap sprint race can result in a three to four car length advantage at the checkered flag. Attention to detail matters.
As braking force is continuously increased, one end of the car must eventually break traction. If the front wheels lock up and turn into little piles of molten rubber first we say that the car is “front biased”, as the front tires are the limiting factor for deceleration. In the not-so-desirable situation where the rear tires are the first to lock we say that the car is “rear biased”, but the driver would probably have a few more choice adjectives to add. In either case, however, one end of the car has given up before the other, limiting the ultimate deceleration capability of the car.
The car with perfectly balanced brake bias will, however, be the last one to hit the brakes going down the back straight. By distributing the braking forces so that all four tires are simultaneously generating their maximum deceleration, stopping distance will be minimized and our hero will quickly find his way to victory lane. Just like neutral handling, balanced brake bias is our ticket to lower lap times.
All that said, once the braking system has achieved its perfect balance, it is still up to the tires to generate the braking forces. It’s still the tires that are stopping the car, but a poorly designed braking system can lengthen stopping distances significantly, expensive sticky tires or not.
While we can do calculations to determine what the optimum front-to-rear brake bias should be under all conditions, the difficult part is creating a brake system that can actually keep up with all of this. Our hero racer has it a little easier than those of us building cars for the real world. If he knows what his maximum deceleration capability is due to the tires he’s using, he can tune his brake system for that specific deceleration level. The good part is, if he tunes his vehicle for this 1.5g decel condition, because of the way weight transfer works, his car will be more front-biased in lower traction conditions, such as rain.
Back to the “fishbone diagram” mentioned earlier. Figure 3 shows front and rear axle weight versus deceleration of the vehicle. Now let’s look at it now as a percentage of the total vehicle weight. We can add on top of this chart the front-to-rear balance of the brake system. For example, if we use the exact same brake components at the front and rear axles of the car, they will each perform 50% of the braking, and the chart will look like Figure 4.
Evaluating this chart, we see that the vehicle will always be rear-biased. That is, the rear brakes will always be applying more force at the tire contact patch than the weight of the rear axle can sustain. This vehicle will always lock the rear brakes before the front. Not so good.
Most cars, however, have brakes at the rear that are smaller than the front. There are a lot of reasons for doing this, and one of them is to help provide the correct brake bias. Also, most cars have a proportioning valve which limits the amount of brake pressure seen at the rear calipers. If we look at the same chart with a more realistic braking system (one that takes into account these effects) it might look like the chart in Figure 5.