Building positive roots from simple roots

alexgs
Messages
23
Reaction score
0
Hi, I've got two related questions.

You can decompose a (semisimple) lie algebra into root spaces, each of which are 1-dimensional. If X has root a and Y has root b then [X,Y] has root a+b. If the root space of a+b is not zero (i.e. there is a root a+b) then is it possible for [X,Y] to still be 0?

I ask because in Georgi on p.107 he has an "inductive" method of building all the positive roots from the simple ones where, if X,Y,... are the simple roots you just form all the brackets of them and check which ones are roots.

For instance, if X and Y are simple you want to see if there are any positive roots a+b. So you form [X,Y] and then check to see if it's a root. But isn't it possible that [X,Y]=0 even if the root space of a+b is not empty? In this case, wouldn't the "algorithm" miss the root a+b?

Thanks in advance.
Alex
 
Physics news on Phys.org
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top