marc017
- 7
- 0
My first post let's see if i did this typing right, if not please forgive me...
\int \frac{(1+ln x)^2}{x}\,dx
Trying to attack it by using substitution..
Using...
u = 1 + ln(x) , du = 1/x
<br /> \begin{align}<br /> \int \frac{(1+ln x)^2}{x}\,dx \\<br /> &= \int (u)^2\,du \\<br /> &= \frac{u^3}{3} + C \\<br /> &= \frac{(1+ln x)^3}{3} + C \\<br /> \end{align}<br />
Where did I go wrong?
Homework Statement
\int \frac{(1+ln x)^2}{x}\,dx
Homework Equations
Trying to attack it by using substitution..
The Attempt at a Solution
Using...
u = 1 + ln(x) , du = 1/x
<br /> \begin{align}<br /> \int \frac{(1+ln x)^2}{x}\,dx \\<br /> &= \int (u)^2\,du \\<br /> &= \frac{u^3}{3} + C \\<br /> &= \frac{(1+ln x)^3}{3} + C \\<br /> \end{align}<br />
Where did I go wrong?
Last edited: