omg4cards
- 3
- 0
Homework Statement
f(x) = \sqrt{x}, a = 4
Homework Equations
f(x) = \sumf^{n}(a)/n! (x-a)^{n}
The Attempt at a Solution
f(x) = x^{1/2}
f^{'}(x) = \frac{1}{2}x^{1/2}
f^{2}(x) = -\frac{1}{2}*\frac{1}{2}x^{-3/2}
f^{3}(x) = \frac{1}{2}*\frac{1}{2}*\frac{3}{2}x^{-5/2}
f^{4}(x) = -\frac{1}{2}*\frac{1}{2}*\frac{3}{2}*\frac{5}{2}x^{-7/2}
f^{n}(x) = (-1)^{n+1}*\frac{1}{2}^{n}*x^{-[(2n-1)/2]}*?
The problem I am having here is with identifying the pattern. I am able to describe everything except the numbers in the numerator(1, 1*1, 1*1*3, 1*1*3*5...). Any help is greatly appreciated!