Calc Residue of \frac{z \sin{z}}{\left( z - \pi \right)^3}

  • Thread starter Thread starter eXorikos
  • Start date Start date
  • Tags Tags
    Residue
eXorikos
Messages
281
Reaction score
5

Homework Statement


Calculate the residu for the singularity of \frac{z \sin{z}}{\left( z - \pi \right)^3}

Homework Equations


R \left( a_0 \right) = \frac{1}{2 \pi i} \oint \frac{z \sin{z}}{\left( z - \pi \right)^3} dz

The Attempt at a Solution


\pi is an essential singularity so the residue cannot be calculated using the limit.
I have tried calculating the integral around the path from 3-i to 4-i to 4+i to 3+i to 3-i. In principle this should work, but Maple gives me a wrong answer if I try to evaluate.

\frac{1}{2 \pi i} \left( \int^4_3 \frac{\left( x - i \right) \sin{x - i}}{\left( x - i - \pi \right)^3} dx + \int^1_{-1} \frac{\left( 4 + iy \right) \sin{4 + iy}}{\left( 4 + iy - \pi \right)^3} dy + \int^3_4 \frac{\left( x + i \right) \sin{x + i}}{\left( x + i - \pi \right)^3} + \int^{-1}_1 \frac{\left( 3 + iy \right) \sin{3 + iy}}{\left( 3 + iy - \pi \right)^3} dy \right)
 
Last edited:
Physics news on Phys.org
How did you conclude that z=\pi is an essential singularity?
 
I was wrong on that. Calculating the residue using the limit works fine, but my problem stands. The integral should give the same result.
 
You're missing a factor of i on the y integrals since dz = i dy.
 
It works fine thanks!

Is there a better choice that makes it easier to calculate the integral?
 
Perhaps let x run from 0 to 2 pi to take advantage of the periodicity of sin z, but I'd try to avoid the contour integrals in the first place.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top