Calculate Angle for Multiple Polarisers to Reduce Intensity <10%

AI Thread Summary
To achieve a total rotation of 45° with multiple polarising filters while ensuring intensity reduction remains below 10%, the angle between the filters must be calculated using the formula I=Imaxcos²(n(θ/n)). The initial attempt yielded 9 filters at 5 degrees each, resulting in an intensity of 0.933, which is acceptable. However, it was later clarified that this is not the smallest integer solution, as the angle does not need to be a whole number. The realization that radians were being used incorrectly led to a reevaluation of the calculations. Correcting this approach is essential for finding the optimal configuration of polarizers.
Mnemonic
Messages
21
Reaction score
0

Homework Statement


You use a sequence of ideal polarising filters, each with its axis making the same angle with the axis of the previous filter, to rotate the plane of polarisation of a polarised light beam by a total of 45°. You wish to have an intensity reduction no larger than 10%.

What is the angle between multiple polarisers?

Homework Equations


I=Imaxcos2(θ)

The Attempt at a Solution


For multiple polarisers I=Imaxcos2*n(θ/n) where n is an integer

So I=cos2*n(θ/n) with I>0.9

The only integer solutions I was able to obtain was 9 polarisers separated by 5 degrees (n=9). This would give I=0.933 which is less than 10% loss if Imax=1.

However, this doesn't appear to be giving me the correct solution. What am I missing?
 
Physics news on Phys.org
Mnemonic said:
So I=cos2*n(θ/n) with I>0.9

The only integer solutions I was able to obtain was 9 polarisers separated by 5 degrees (n=9).
Using the formula, I find that n = 9 is not the smallest integer value of n that will work. (θ does not need to be an integer number of degrees.)
 
  • Like
Likes Mnemonic
TSny said:
Using the formula, I find that n = 9 is not the smallest integer value of n that will work. (θ does not need to be an integer number of degrees.)
Was using radians in solution. Thanks for making me look back and double-check!
 
OK. Good.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top