Calculate Change in Velocity of Flatcar When Man Runs Opposite Direction

Click For Summary
SUMMARY

The discussion focuses on calculating the change in velocity of a flatcar when a man runs in the opposite direction. The flatcar weighs 3000 N and moves at an initial speed of 16.8 m/s, while the man weighs 746 N and runs at 4.46 m/s relative to the flatcar. The correct increase in the speed of the flatcar is determined to be 0.888 m/s. Key equations used include the conservation of momentum: m1u1 + m2u2 = m1v1 + m2v2, and the calculation of mass from weight using F = ma.

PREREQUISITES
  • Understanding of conservation of momentum
  • Ability to calculate mass from weight using F = ma
  • Familiarity with relative velocity concepts
  • Basic knowledge of kinematics
NEXT STEPS
  • Study the application of conservation of momentum in different systems
  • Learn how to analyze relative motion in physics
  • Explore the effects of friction on moving objects
  • Investigate real-world applications of momentum in transportation systems
USEFUL FOR

This discussion is beneficial for physics students, educators, and anyone interested in understanding momentum and motion dynamics in mechanical systems.

DavidAp
Messages
44
Reaction score
0
A man (weighing 746 N) stands on a long railroad flatcar (weighing 3000 N) as it rolls at 16.8 m/s in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at 4.46 m/s relative to the flatcar. What is the resulting increase in the speed of the flatcar?

Answer 0.888 m/s

Relevant Equations

m1u1 + m2u2 = m1v1 + m2v2
F = ma

In my attempt I saw that I would probably have to work with the equation m1u1 + m2u2 = m1v1 + m2v2 since I was asked to find the difference in velocities. Knowing that i solved for the masses of each object.
Man (Object 1)
F = 746 N
m = 746/9.8 = 76.12 kg

Flatcar (Object 2)
F = 3000 N
m = 3000/9.8 = 306.12 kg

After that I rearranged the conservation of momentum equation to fit the problem stated above. Since, in the beginning, they can be treated as one object the equation is,
u(m1 + m2) = m1(u-v1) + m2v2
I also noted that the velocity of the man was relative to the flatcar so I took the difference of the two velocities and assigned it to the man. After having this I solved for v2 and plugged in the knowns.
v2 = [u(m1 + m2) - m1(u-v1)]/m2
v2 = [16.8(76.12 + 306.12) - 76.12(16.8 - 4.46)]/306.12
v2 = 17.909 m/s

However, when I go and calculate the difference I get... well, something that is not the answer!
Δv = vf - vi = 17.909 - 16.8 = 1.109 m/s.

What did I do wrong? Did I not understand what the question was asking of me?
Thank you for taking the time to read and review my question.
 
Last edited:
Physics news on Phys.org


DavidAp said:
A man (weighing 746 N) stands on a long railroad flatcar (weighing 3000 N) as it rolls at 16.8 m/s in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at 4.46 m/s relative to the flatcar. What is the resulting increase in the speed of the flatcar?

Answer 0.888 m/s

Relevant Equations

m1u1 + m2u2 = m1v1 + m2v2
F = ma

In my attempt I saw that I would probably have to work with the equation m1u1 + m2u2 = m1v1 + m2v2 since I was asked to find the difference in velocities. Knowing that i solved for the masses of each object.
Man (Object 1)
F = 746 N
m = 746/9.8 = 76.12 kg

Flatcar (Object 2)
F = 3000 N
m = 3000/9.8 = 306.12 kg

After that I rearranged the conservation of momentum equation to fit the problem stated above. Since, in the beginning, they can be treated as one object the equation is,
u(m1 + m2) = m1(u-v1) + m2v2
I also noted that the velocity of the man was relative to the flatcar so I took the difference of the two velocities and assigned it to the man. After having this I solved for v2 and plugged in the knowns.
v2 = [u(m1 + m2) - m1(u-v1)]/m2
v2 = [16.8(76.12 + 306.12) - 76.12(16.8 - 4.46)]/306.12
v2 = 17.909 m/s

However, when I go and calculate the difference I get... well, something that is not the answer!
Δv = vf - vi = 17.909 - 16.8 = 1.109 m/s.

What did I do wrong? Did I not understand what the question was asking of me?
Thank you for taking the time to read and review my question.

You are on the right track but the red part is not quite correct. Remember that once the man starts moving, the flatcar is no longer going at 16.8 m/s. How does that change your equation?
 

Similar threads

Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 10 ·
Replies
10
Views
7K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K