Calculate clamp force on bike handlebar

  • Thread starter Thread starter FionnL
  • Start date Start date
  • Tags Tags
    Bike Force
AI Thread Summary
The discussion focuses on calculating the clamping force of a single bolt used to secure bike handlebars in the stem, addressing issues of handlebars slipping during use. The user suspects that the slipping is due to manufacturing inconsistencies rather than a design flaw, as this type of clamp is common. Participants suggest that the problem may arise from mismatched curvatures between the clamp and handlebars, leading to inadequate contact area. To resolve the issue, they recommend assessing the contact area and considering the fit of the components. The user seeks mathematical proof to compare the effectiveness of one bolt versus multiple bolts in securing the handlebars.
FionnL
Messages
3
Reaction score
0
Hi Folks

I am looking for some help in a calculation if possible.

I am looking at a bike design where the handlebars are clamped in place in the stem using only 1 bolt - see the picture attached or link below for an example.

http://i.ebayimg.com/00/s/MTE5OFgxNjAw/z/rdgAAOxyrYFR2wbP/$(KGrHqF,!k8FHQwpchTzBR2wbP!Now~~60_35.JPG
Stem.JPG


There has been issues with the handle bars slipping forward when in use. I think that this is a manufacturing problem and not a design issue as this type of stem with one bolt is quite common.

However I would like to prove this mathematically. How do I calculate the force that the bolt and clamp have on the handlebars? I would like to compare a calculation of 1 bolt versus 2 and 4.

Any help greatly appreciated.

Thanks
 
Engineering news on Phys.org
FionnL said:
Hi Folks

I am looking for some help in a calculation if possible.

I am looking at a bike design where the handlebars are clamped in place in the stem using only 1 bolt - see the picture attached or link below for an example.

http://i.ebayimg.com/00/s/MTE5OFgxNjAw/z/rdgAAOxyrYFR2wbP/$(KGrHqF,!k8FHQwpchTzBR2wbP!Now~~60_35.JPGView attachment 78082

There has been issues with the handle bars slipping forward when in use. I think that this is a manufacturing problem and not a design issue as this type of stem with one bolt is quite common.

However I would like to prove this mathematically. How do I calculate the force that the bolt and clamp have on the handlebars? I would like to compare a calculation of 1 bolt versus 2 and 4.

Any help greatly appreciated.

Thanks

I think the problem with this type of goose-neck comes about when the curvature of the sleeve does not match the curvature of the cylinder for the handlebars. If the diameter of the handlebar is undersize, you will be making contact with a very small area on the top and the bottom. As you crank down on the nut, you may be using a lot of force to deform the gooseneck, without making better contact. If the diameter of the handlebar is too large, you will be biting at the edges. I think both cases will allow the handlebar to slip. I have had similar problems with other types of hinged pieces.

With the handlebar in place, look for gaps. You might try putting some kind of material in between to get a better grip.
 
Quantum Defect said:
I think the problem with this type of goose-neck comes about when the curvature of the sleeve does not match the curvature of the cylinder for the handlebars. If the diameter of the handlebar is undersize, you will be making contact with a very small area on the top and the bottom. As you crank down on the nut, you may be using a lot of force to deform the gooseneck, without making better contact. If the diameter of the handlebar is too large, you will be biting at the edges. I think both cases will allow the handlebar to slip. I have had similar problems with other types of hinged pieces.

With the handlebar in place, look for gaps. You might try putting some kind of material in between to get a better grip.

Cheers for the reply. Yes this is what I think is happening but I am being told it is the design... so I want to prove with maths that it works so I am looking to calculate the clamping force of 1 bolt versus 2 or 4.
 
FionnL said:
Cheers for the reply. Yes this is what I think is happening but I am being told it is the design... so I want to prove with maths that it works so I am looking to calculate the clamping force of 1 bolt versus 2 or 4.

I think that you need to know what the contact area is between goose neck and handlebar. My lovely old road bike has a one-piece gooseneck with a single bolt. The fit between hole and handlebar is pretty snug without any tension on the nut (a lovely fit). With a little tenisoning of the nut, it holds perfect. 30+ years without a problem.

Not so much the issue of one-nut, two-nuts, etc. but a question of fit, I think.
 
Apologies I only posted that picture as a reference. Please see attached for a picture of the design and relevant dimensions. Both stem head and handle bars are made of stainless steel. I agree that what you are describing is most likely the problem but I need to prove the design first and am looking to find the right equations.
Handlebar_Clamp.jpg
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Back
Top