Calculate Det[A] Using Tensor Analysis

AI Thread Summary
The discussion focuses on deriving the determinant of a matrix A using tensor analysis, specifically through the relationship involving the Levi-Civita symbol (ε) and Kronecker delta (δ). The formula presented is det[A] = 1/6 (A_ii A_jj A_kk + 2 A_ij A_jk A_ki - 3 A_ij A_ji A_kk). The approach involves manipulating the expression ε_pqr det[A] = ε_ijk A_ip A_jq A_kr and applying properties of the Levi-Civita symbol. Participants suggest expanding the determinant using Kronecker deltas to simplify the expression further. The discussion emphasizes the importance of correctly applying tensor identities to arrive at the desired result.
vishnu vardha
Messages
1
Reaction score
0
ε

Homework Statement


show that the determinant of a matrix A can be calculated as followings:

det[A]= 1/6 (A_ii A_jj A_kk + 2 A_ij A_jk A_ki - 3 A_ij A_ji A_kk


Homework Equations





The Attempt at a Solution



use ε_pqr det[A]= ε_ijk A_ip A_jq A_kr

ε_pqr ε_pqr det[A]= ε_ijk ε_pqr A_ip A_jq A_kr

use ε_pqr ε_pqr = 6

det[A]= 1/6 ( ε_ijk ε_pqr A_ip A_jq A_kr)

and ε_ijk ε_pqr = det | δ_ip δ_iq δ_ir |
| δ_jp δ_jq δ_jr |
| δ_kp δ_kq δ_kr |

from here i don't know what to do
and δ - delta and ε - epsilon
 
Physics news on Phys.org
So far so good. Just expand the determinant out now.
$$\begin{vmatrix}
\delta_{ip} & \delta_{iq} & \delta_{ir} \\
\delta_{jp} & \delta_{jq} & \delta_{jr} \\
\delta_{kp} & \delta_{kq} & \delta_{kr}
\end{vmatrix} = \delta_{ip}\delta_{jq}\delta_{kp} + \cdots$$ Then plug the resulting expression into
$$\det(A) = \frac{1}{6}(\varepsilon_{ijk}\varepsilon_{pqr} A_{ip}A_{jq}A_{kr})$$ The Kronecker deltas will allow you to do some of the summations.
 
Back
Top