Calculate Internal Angular Momentum and Energy

AI Thread Summary
The discussion revolves around calculating the internal angular momentum and energy of four particles, each with a mass of 1 kg, moving on a plane. The center of mass (CoM) position and velocity were correctly determined as Xcm=7/4(i + j) and Vcm= ½i + ¼j, respectively. However, there is confusion regarding the internal kinetic energy calculation, with the initial result of 23.5 J being incorrect; the correct value should be 22.9 J. Participants emphasize the importance of calculating the velocities of the particles relative to the CoM to accurately determine internal kinetic energy. The formula for the relative velocity is confirmed as V' = Vcartesian - VCoM, which is essential for the calculations.
Nicolas Gallardo
Messages
12
Reaction score
0

Homework Statement


Four particles of mass 1 Kg each, are moving on a plane with the velocities given in the figure.
Sin título.jpg


Homework Equations

The Attempt at a Solution


First I calculated the position of the CoM:
Xcm=7/4(i + j)
Then I calculated the velocity of the CoM:
Vcm= ½i + ¼j

For the internal energy I did the following:

Kint= (1/2)(1.52) + (1/2)(1.32) + (1/2)(1.32) + (1/2)(1.22) = 23,5J

But the answer is 22,9 J. And for the internal angular momentum I do not actually know with respect to which point I should calculate it. Any hint would be appreciated. Thank you.
 

Attachments

  • Sin título.jpg
    Sin título.jpg
    13.7 KB · Views: 743
Last edited:
Physics news on Phys.org
Nicolas Gallardo said:
Xcm=7/4(i + j)
Then I calculated the velocity of the CoM:
Vcm= ½i + ¼j

For the internal energy I did the following:

Kint= (1/2)(1.52) + (1/2)(1.32) + (1/2)(1.32) + (1/2)(1.22) = 23,5J
The numbers in the figure are hard to read. If I'm reading them correctly, it appears that your results for the position and velocity of the center of mass are correct. But, it doesn't appear to me that your values for the "internal" speeds of the particles are correct. For example, how did you get 1.5 m/s for the speed that you used in the first term of Kint? To which particle does this refer?
 
TSny said:
The numbers in the figure are hard to read. If I'm reading them correctly, it appears that your results for the position and velocity of the center of mass are correct. But, it doesn't appear to me that your values for the "internal" speeds of the particles are correct. For example, how did you get 1.5 m/s for the speed that you used in the first term of Kint? To which particle does this refer?

That is (1/2)(mv^2)⇒ (1/2)(1(5^2)). One of the velocities is 5 m/s.
The other 3 velocities are: 3 m/s, 3 m/s, 2m/s
 
Nicolas Gallardo said:
That is (1/2)(mv^2)⇒ (1/2)(1(5^2)). One of the velocities is 5 m/s.
5 m/s is the speed of the particle relative to the reference frame of the Cartesian axes shown in the picture. You would use 5 m/s if you wanted the kinetic energy of the particle relative to this frame. But, you are looking for the "internal kinetic energy". This would be the kinetic energy relative to what frame of reference?
 
TSny said:
5 m/s is the speed of the particle relative to the reference frame of the Cartesian axes shown in the picture. You would use 5 m/s if you wanted the kinetic energy of the particle relative to this frame. But, you are looking for the "internal kinetic energy". This would be the kinetic energy relative to what frame of reference?
Relative to the CoM? But how would that change in the equation?
 
Nicolas Gallardo said:
Relative to the CoM?
Yes
But how would that change in the equation?
Can you find the velocity of each particle relative to the CoM frame?
 
TSny said:
Yes
Can you find the velocity of each particle relative to the CoM frame?
If we denote V' to the velocity of the particle related to the CoM frame, V to the velocity of the particle related to the cartesian axe and VCoM to the velocity of the CoM, then the velocity of the particle would be:
V'= Vcartesian - VCoM
Am I correct?
 
Nicolas Gallardo said:
If we denote V' to the velocity of the particle related to the CoM frame, V to the velocity of the particle related to the cartesian axe and VCoM to the velocity of the CoM, then the velocity of the particle would be:
V'= Vcartesian - VCoM
Am I correct?
Yes.
 
Back
Top