jimmycricket
- 115
- 2
1. Homework Statement
Evaluate the following real integral using complex integrals:
\int_0^\infty \frac{cos(2x)}{x^2+4}dx
Cauchy's Residue Theorem for simple pole at a: Res(f;a)=\displaystyle\lim_{z\rightarrow a} (z-a)f(z)
Since the function \frac{cos(2x)}{x^2+4}dx is even, \int_0^\infty \frac{cos(2x)}{x^2+4}dx =\frac{1}{2} \int_{-\infty}^\infty \frac{cos(2x)}{x^2+4}dx
Consider the real part of f(z)=\frac{e^{2iz}}{z^2+4}
\int_0^\infty \frac{cos(2x)}{x^2+4}dx=\frac{1}{2}Re(\displaystyle\lim_{R\rightarrow \infty}\int_{[-R,R]} \frac{e^{2iz}}{z^2+4})dz
We have \int_{[-R,R]}f(z)dz=\int_\gamma f(z)-\int_{\gamma R} f(z)dz
where \int_{\gamma R} f(z)dz tends to zero as can be shown by the estimation theorem.
To calculate \int_\gamma f(z) we find the residue of f at the simple pole z=2i:
Res(f;2i)=\lim_{z\rightarrow {2i}}(z-2i)\frac{e^{2iz}}{z^2+4}=\lim_{z\rightarrow {2i}}\frac{e^{2iz}+2ie^{2iz}(z-2i)}{2z}=\frac{1}{4ie^4}
This is obviously incorrect since there can be no imaginary part
Evaluate the following real integral using complex integrals:
\int_0^\infty \frac{cos(2x)}{x^2+4}dx
Homework Equations
Cauchy's Residue Theorem for simple pole at a: Res(f;a)=\displaystyle\lim_{z\rightarrow a} (z-a)f(z)
The Attempt at a Solution
Since the function \frac{cos(2x)}{x^2+4}dx is even, \int_0^\infty \frac{cos(2x)}{x^2+4}dx =\frac{1}{2} \int_{-\infty}^\infty \frac{cos(2x)}{x^2+4}dx
Consider the real part of f(z)=\frac{e^{2iz}}{z^2+4}
\int_0^\infty \frac{cos(2x)}{x^2+4}dx=\frac{1}{2}Re(\displaystyle\lim_{R\rightarrow \infty}\int_{[-R,R]} \frac{e^{2iz}}{z^2+4})dz
We have \int_{[-R,R]}f(z)dz=\int_\gamma f(z)-\int_{\gamma R} f(z)dz
where \int_{\gamma R} f(z)dz tends to zero as can be shown by the estimation theorem.
To calculate \int_\gamma f(z) we find the residue of f at the simple pole z=2i:
Res(f;2i)=\lim_{z\rightarrow {2i}}(z-2i)\frac{e^{2iz}}{z^2+4}=\lim_{z\rightarrow {2i}}\frac{e^{2iz}+2ie^{2iz}(z-2i)}{2z}=\frac{1}{4ie^4}
This is obviously incorrect since there can be no imaginary part
Last edited: