Calculating Absolute Value: FTC Method vs. Book Method vs. Calculator Method

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Value
nameVoid
Messages
238
Reaction score
0
latex2png.2.php?z=100&eq=%5Cint_%7B-3%7D%5E%7B6%7D%7Cx-4%7Cdx%20.jpg

2png.2.php?z=100&eq=%5Cint_%7B-3%7D%5E%7B0%7D(-x-4)dx%20%20%20%2B%5Cint_%7B0%7D%5E%7B6%7D(x-4)dx.jpg


im getting -27/2
book is giving 53/2
calc is giving 21/2

Homework Equations





The Attempt at a Solution






 
Physics news on Phys.org
|x-4| is only equal to x-4 for x greater than or equal to 4. What is it if x<4?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top