Calculating Commutator [H,U(m,n)] with Homework Statement

Berny
Messages
2
Reaction score
0

Homework Statement


|phi (n)> being eigen states of hermitian operator H ( H could be for example the hamiltonian
of anyone physical system ). The states |phi (n)> form an orthonormal discrete basis.
The operator U(m,n) is defined by:

U(m,n)= |phi(m)><phi(n)|
Calculate the commutator:
[H,U(m,n)]

( this is part of the first problem in Cohen, Tannoudji, Diu, Laloe textbook in quantum mechanics.)

The Attempt at a Solution

\

[HU-UH] (ψ) = H|phi(m)><phi (n)|ψ> - |phi (m)><phi(n)| H| ψ>

= <phi(n)|ψ> H |phi (m>) - |phi (m><phi(n)| <ψ | H

and then ? i did not find symbol phi.
 
Physics news on Phys.org
Note that the operator ##H## can be written as ##H=\sum\limits_{k}E_{k}\left|\phi(k)\right>\left<\phi(k)\right|##, where the ##E_{k}## are its eigenvalues. Also, note that the vectors ##\left|\phi(k)\right>## form an orthonormal set.
 
you should use an eigenstate of the Hamiltonian instead of \psi (if you ask how you can do that, you can expand \psi as a superposition of the Hamiltonian's eigenstates)
Then in general, following correct paths you will reach the desired result/
 
Berny said:

Homework Statement


|phi (n)> being eigen states of hermitian operator H ( H could be for example the hamiltonian
of anyone physical system ). The states |phi (n)> form an orthonormal discrete basis.
The operator U(m,n) is defined by:

U(m,n)= |phi(m)><phi(n)|
Calculate the commutator:
[H,U(m,n)]

( this is part of the first problem in Cohen, Tannoudji, Diu, Laloe textbook in quantum mechanics.)

The Attempt at a Solution

\

[HU-UH] (ψ) = H|phi(m)><phi (n)|ψ> - |phi (m)><phi(n)| H| ψ>

= <phi(n)|ψ> H |phi (m>) - |phi (m><phi(n)| <ψ | H

and then ? i did not find symbol phi.

many thanks for help. I find a commutator value depending upon the system energy :

commutator = E(m) U(m,n) if E= E(m) and - E(n) U(m,n) if E=E(n).

in other cases it's zero.
Is this correct ?
 
I got something like [H,U(m,n)] = (E(m)-E(n))U(m,n). The commutator does not depend on what state the quantum system is in.
 
Berny said:

Homework Statement


|phi (n)> being eigen states of hermitian operator H ( H could be for example the hamiltonian
of anyone physical system ). The states |phi (n)> form an orthonormal discrete basis.
The operator U(m,n) is defined by:

U(m,n)= |phi(m)><phi(n)|
Calculate the commutator:
[H,U(m,n)]

( this is part of the first problem in Cohen, Tannoudji, Diu, Laloe textbook in quantum mechanics.)

The Attempt at a Solution

\

[HU-UH] (ψ) = H|phi(m)><phi (n)|ψ> - |phi (m)><phi(n)| H| ψ>

= <phi(n)|ψ> H |phi (m>) - |phi (m><phi(n)| <ψ | H
You can say that ##\hat{H}\lvert \phi_m \rangle \langle \phi_n \vert \psi \rangle = \langle \phi_n \vert \psi \rangle \hat{H}\lvert \phi_m \rangle## because ##\langle \phi_n \vert \psi \rangle## is a number, though it doesn't really help you in this case. What you can't do is say ##\lvert \phi_m \rangle \langle \phi_n \lvert \hat{H} \rvert \psi \rangle## equals ##\lvert \phi_m \rangle \langle \phi_n \lvert \langle \psi \rvert \hat{H}## because ##\hat{H}\lvert \psi \rangle## and ##\langle \psi \rvert \hat{H}## aren't the same. One's a bra; the other, a ket. You need to be a bit more precise with your notation, otherwise you're invariably going to make errors.

You have, so far,
\begin{align*}
[\hat{H},\hat{U}] &= \hat{H}\hat{U} - \hat{U}\hat{H} \\
&= \hat{H}\lvert \phi_m\rangle\langle\phi_n\rvert - \lvert \phi_m\rangle\langle\phi_n\rvert\hat{H}
\end{align*} Now in the first term, apply ##\hat{H}## to the ket ##\lvert \phi_m \rangle##. What do you get? Similarly, in the second term, what do you get when ##\hat{H}## acts on the bra ##\langle \phi_n \rvert##?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top