Calculating components of a third-quadrant vector

AI Thread Summary
The discussion revolves around calculating components of a third-quadrant vector using trigonometric identities. Participants emphasize the importance of verifying answers and applying generic rules for sine and cosine functions, particularly for angles involving π and 2π. Key formulas discussed include sin(π + θ) and cos(π + θ), along with their implications for vector components Cy and Cx. Additional rules for sine and cosine functions, including negative angles and shifts by π/2, are also explored. The conversation concludes with a participant expressing understanding of the concepts discussed.
Joe_mama69
Messages
4
Reaction score
1
Homework Statement
I am not sure if I did this right as it wasn't as complicated as I think the solution should be and I couldn't find anything online as to how the solution is even supposed to look like. I inserted an imgur link of my answer in case the image on here isn't clear: https://imgur.com/a/tE28WWu

Calculate the components of a third quadrant vector C in the following ways:

1. use the angle between the vector and the negative x-axis (delta) and apply right-triangle trigonometry

2. use the angle between the vector and the negative y-axis (epsilon) and apply right-triangle trigonometry

3. use the standard angle for the vector (gamma) - that is, find the connection between gamma and delta in the formulas you found in part 1.

4. use the standard angle for the vector (gamma) - that is, find the connection between gamma and epsilon in the formulas you found in part 2.
Relevant Equations
x component = magnitude * cos(standard angle)
y component = magnitude * sin(standard angle)
Weekend Assignment 1-5.jpg
 
Physics news on Phys.org
1) Correct

2) Wrong. Check yr answer again!

3) What are the generic rules for below:
sin(π + θ) = ?
cos(π + θ) = ?

Apply above result to below to see relation with 1.
Cy = C sin(ϒ) = C sin(π + δ) = ?
Cx = C cos(ϒ) = C cos(π + δ) = ?

4) What are the generic rules for
sin(2π + θ) = ?
cos(2π + θ) = ?
cos(- θ) = ?
sin(- θ) = ?
cos(π/2 + θ) = ?
sin(π/2 + θ) = ?

Apply them to below to see the relation with 2.
Cy = C sin(ϒ) = C sin(3π/2 - ϵ) = C sin(2π – (π/2 + ϵ)) = ?
Cx = C cos(ϒ) = C cos(3π/2 - ϵ) = C cos(2π – (π/2 + ϵ)) = ?
 
Last edited:
Tomy World said:
1) Correct

2) Wrong. Check yr answer again!

3) What are the generic rules for below:
sin(π + θ) = ?
cos(π + θ) = ?

Apply above result to below to see relation with 1.
Cy = C sin(ϒ) = C sin(π + δ) = ?
Cx = C cos(ϒ) = C cos(π + δ) = ?

4) What are the generic rules for
sin(2π + θ) = ?
cos(2π + θ) = ?
cos(- θ) = ?
sin(- θ) = ?
cos(π/2 + θ) = ?
sin(π/2 + θ) = ?

Apply them to below to see the relation with 2.
Cy = C sin(ϒ) = C sin(3π/2 - ϵ) = C sin(2π – (π/2 + ϵ)) = ?
Cx = C cos(ϒ) = C cos(3π/2 - ϵ) = C cos(2π – (π/2 + ϵ)) = ?
Thanks I've got it now!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top