Pr0grammer
- 5
- 0
Homework Statement
Find the eigenvalues and the eigenvectors for the given matrix.
Homework Equations
\[<br /> A =<br /> \left[ {\begin{array}{ccc}<br /> -1 & 6 & 2 \\<br /> 0 & 5 & -6 \\<br /> 1 & 0 & -2 \\<br /> \end{array} } \right]<br /> \]
The Attempt at a Solution
I solved A-\lambda I = 0 and got eigenvalues of -4 and 3, which I've confirmed as correct. After that, to solve for the eigenvalue of -4:
\[<br /> A+4I =<br /> \left[ {\begin{array}{ccc}<br /> 3 & 6 & 2 \\<br /> 0 & 9 & -6 \\<br /> 1 & 0 & 2 \\<br /> \end{array} } \right]<br /> \] ~ \[<br /> \left[ {\begin{array}{ccc}<br /> 1 & 0 & 2 \\<br /> 0 & 1 & -2/3 \\<br /> 0 & 0 & 0 \\<br /> \end{array} } \right]<br /> \]
so \vec x = a \[<br /> \left[ {\begin{array}{c}<br /> -2 \\<br /> 2/3 \\<br /> 1 \\<br /> \end{array} } \right]<br /> \] for all a≠0.
...however, according to two different calculators, \vec x = a \[<br /> \left[ {\begin{array}{c}<br /> 1.1872 \\<br /> -.3957 \\<br /> -.5936 \\<br /> \end{array} } \right]<br /> \]
...which I've verified as being a working solution, while with mine:
( A + 4 I ) \vec x =\[<br /> \left[ {\begin{array}{c}<br /> -2 \\<br /> 6 \\<br /> -2 \\<br /> \end{array} } \right]<br /> \] - all values should equal zero, which they do with the calculated solution. What am I doing wrong?