Calculating Electric Displacement in Dielectric-Filled Capacitor Slabs

BearY
Messages
53
Reaction score
8

Homework Statement


Introduction to Electrodynamics (4th Edition) By J Griffth Ch.4
Problem 4.18
The space between the plates of a parallel-plate capacitor is filled with two slabs of linear dielectric material. Each slab has thickness a, so the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric constant of 1.5. The free charge density on the top plate is σ and on the bottom plate −σ.

(a) Find the electric displacement D in each slab

Homework Equations


$$\epsilon_r = \frac{\epsilon}{\epsilon_0}$$
$$D = \epsilon_r\epsilon_0 E $$
And for parallel plate capacitor.
$$E_{vac} = \frac{\sigma}{\epsilon_0}$$

The Attempt at a Solution


How do I relate ##E## to ##E_{vac}##? I see in the text when you don't need to worry about boundary condition, $$D = \epsilon_0 E_{vac}$$. But I am not very sure what that means in this setup. There are 3 boundaries in this problem. Solution online and the solution given by my professor to a similar question seem to have$$\epsilon= \epsilon_0 $$ somehow. The link seems trivial(?) so that neither of these solutions explained this.
 
Physics news on Phys.org
Using the electric displacement ## D ##, Gauss' law reads ## \nabla \cdot D=\rho_{free} ##. ## \\ ## Applying Gauss' with one face of the pillbox between the plates is all you need for this problem.
 
  • Like
Likes BearY
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top