Calculating electrical potential difference with a sphere

AI Thread Summary
To calculate the potential difference between two points outside a charged sphere, the radius of the sphere is irrelevant, as the charge can be treated as concentrated at the center. The formula for electrical potential difference, V = (ke x Q)/r, should be applied using the distances from the center of the sphere, which are 4 m for point B and 9 m for point A. The correct approach involves calculating the potential at both points and then subtracting the potential at point A from that at point B. The confusion regarding the radius arises because it does not affect the potential outside the sphere. Understanding this concept simplifies the problem significantly.
HenryHH
Messages
12
Reaction score
0

Homework Statement



A sphere with radius 2.0 mm carries a 1.0 μC charge. What is the potential difference, VB - VA, between point B 4.0 m from the center of the sphere and point A 9.0 m from the center of the sphere? (The value of k is 9.0 × 10^9 N∙m2/C2.)

Homework Equations



The formula for electrical potential difference: V = (ke x Q)/r

The Attempt at a Solution



My professor said the answer is 1300V, but I'm having a hard time arriving at that answer. My understanding is that I should use the formula V = (ke x Q)/r first for point B and then for point A, and then I should subtract the answer I got for point A from the answer I got for point B. However, I'm not sure what to plug in for the "r" value of the formula. After converting from mm to m, the radius of the sphere is .002m. If point B is 4m from the center of the sphere and point A is 9m from the center of the sphere, do I subtract .002 from each of those numbers? Unless I have just incorrectly converted units, I am not getting an answer anywhere near 1300V. Is there some other formula I need to use?
 
Physics news on Phys.org
HenryHH said:
My professor said the answer is 1300V, but I'm having a hard time arriving at that answer. My understanding is that I should use the formula V = (ke x Q)/r first for point B and then for point A, and then I should subtract the answer I got for point A from the answer I got for point B. However, I'm not sure what to plug in for the "r" value of the formula.

The charged sphere can be taken as if its whole charge were concentrated in the centre. So you have to plug in the given distances from the centre, 4 m and 9 m.

ehild
 
Thanks. So why was the radius of the sphere given? Just to throw off the fact that the problem is actually easier and more straightforward than it looks?
 
It is kind of knowledge that the radius of the sphere is irrelevant when you need to find the electric field outside the sphere.

The charged sphere can be substituted with a point charge in the centre when the charge distribution has spherical symmetry. Not otherwise.

Sometimes a problem asks the electric field or potential inside a charged sphere. In that case you have to take the charge distribution and the radius into account.

ehild
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top