Calculating Energy Loss in Conductors: A Beginner's Guide

AI Thread Summary
Energy loss in conductors primarily occurs due to resistance, which can be calculated using the formula R = ρ * l / A, where ρ is the material's resistivity, l is the length, and A is the cross-sectional area. The power dissipated is given by P = I²R, where I is the current, and for alternating current (AC), the root mean square (rms) value of the current should be used. Voltage drop in a conductor can be estimated with V = IRcosφ + IXsinφ, accounting for resistance and reactance, where φ is the power factor angle. The discussion highlights that additional losses, such as eddy currents and skin effect, can also impact energy dissipation in conductors. Understanding these principles is essential for accurately estimating energy loss in electrical systems.
TyPR124
Messages
4
Reaction score
0
This is probably a dumb question, but I only need to know for a program I would like to write.

Basically, on average (I realize there are a lot of factors involved, but a rough estimate is all I need), how much energy dissipates over a specific length of a conductor (power lines, whatever they are made of)? (I don't know what an appropriate length would be, as I have no idea at all how far AC can travel. I have a vague idea of DC, but that is only because I am into networking.)

Also, since W=V*I, and I'm assuming that I shouldn't decrease, then V is what decreases?

Thank you.
 
Engineering news on Phys.org
You would need the resistance of the conductor

R = ρ * l / A

Where ρ is the specific resistance of the material (1.72×10^-8 Ωm for copper), l is the length of the conductor and A is the cross-sectional area.

This conductor will dissipate P = I²R watts if you send a current of I amperes through it. For time-varying current, replace I with the rms-value.
 
Put this in google and read about transmission loss.
" edison ac wiki "
 
TyPR124 said:
This is probably a dumb question, but I only need to know for a program I would like to write.

Basically, on average (I realize there are a lot of factors involved, but a rough estimate is all I need), how much energy dissipates over a specific length of a conductor (power lines, whatever they are made of)? (I don't know what an appropriate length would be, as I have no idea at all how far AC can travel. I have a vague idea of DC, but that is only because I am into networking.)

Also, since W=V*I, and I'm assuming that I shouldn't decrease, then V is what decreases?

Thank you.

The voltage drop in a cable can be found (approximately) with this equation:

V = IRcos\phi + IXsin\phi

where,

V is the voltage drop in the circuit (line to neutral)
I is the current flowing in the conductor
R is the line resistance for one conductor, in ohms
X is the line reactance for one conductor, in ohms
\phi is the angle whose cosine is the load power factor

This is the generally accepted approximate voltage drop formula from IEEE. There is an exact one but it's not usually necessary.

Note that the formula gives line to neutral voltage drop. Hence, if you have a single phase system you'll multiply by 2 for the total voltage drop; if it is a three phase system you multiply by 1.73.

CS
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top