Calculating functions for wave problems

  • Thread starter Thread starter into space
  • Start date Start date
  • Tags Tags
    Functions Wave
AI Thread Summary
A wave traveling at 30 m/s with a frequency of 50 Hz has its function represented as y(x,t) = Asin(10.47(x) - 314.16(t) + θ). The amplitude (A) and initial phase shift (θ) were determined using initial conditions, resulting in A = 0.0089 m and θ = 2.67 radians. The phase shift was adjusted from -0.466 radians to 2.67 radians due to the periodic nature of the tangent function, which can yield multiple valid angles. The discussion highlights the importance of using additional information to select the correct angle when solving trigonometric equations. Understanding these nuances is crucial for accurately modeling wave behavior.
into space
Messages
17
Reaction score
0

Homework Statement


A wave travels along a string in the positive x-direction at 30 m/s. The frequency of the wave is 50 Hz. At x = 0 and t = 0, the wave velocity is 2.5 m/s and the vertical displacement is y = 4 mm. Write the function y(x,t) for the wave.


Homework Equations


velocity = (wavelength)(frequency) = (angular velocity)/(wave number)
angular velocity = 2*pi*frequency
What the function should look like:
y(x,t) = Asin(kx - wt + θ)
A = amplitude
k = wave number
w = angular velocity
t = time (s)
θ = initial phase shift



The Attempt at a Solution


Figuring out the wave number (k) as well as the wavelength and angular velocity was the easy part:
w = 2*pi*(50 Hz) = 100*pi
wavelength = velocity/frequency = (30 m/s)/(50 Hz) = .6 m
wave number (k) = w/v = (100*pi)/(30 m/s) = 10.47 m^-1

So far the function looks like:
y(x,t) = Asin(10.47(x) - 314.16(t) + θ)

The only variables left to find are the amplitude (A) and initial phase shift (θ). I tried plugging in the initial conditions the problem gave me, but I end up with:
y(x,t) = Asin(θ) = .004
differentiating the function y(x,t) = Asin(10.47(x) - 314.16(t) + θ) with respect to time gives the velocity equation, which is:
v(x,t) = -A(314.16)cos(10.47(x) - 314.16(t) + θ)

and plugging in the initial conditions for velocity gives:
-A(314.16)cos(θ) = 2.5

I don't know where to go from here to find amplitude and the initial phase shift. I have tried setting the velocity equation equal to zero which would give me a critical point (amplitude), but that didn't help much. I've also tried using a substitution method between these two equations:
y(x,t) = Asin(θ) = .004
-A(314.16)cos(θ) = 2.5

but that didn't get me anywhere either. Any help would be greatly appreciated!
 
Physics news on Phys.org
Divide one of the equations by the other. So we have,

A sinθ = .004
-314.16Acosθ = 2.5

Gives,

-(1/314.16)tanθ = .004/2.5

A is gone, so this can be solved for θ immediately, and then of course you can plug this back into get A.
 
So the initial phase shift is -.466 rad and the amplitude is .0089 m. In order to get the correct initial phase shift from the book I have to add -.466 and 3.14 (pi) which yields 2.67 rads (this is the answer given in the book). Why do I have to add my answer in order to get the desired answer from the book?

The amplitude is correct as is, though. At any rate thanks for the help!
 
Last edited:
The phase shift problem is due to the multivalued-ness of the arctan "function" -- there are many angles that give the same tangent, even within the same 2π "period." In particular, for every solution in the first quadrant there is one in the third, and for every solution in the second quadrant there is one in the fourth (which you can verify by thinking about the definition of the tangent function, or looking at a graph of tan(x)). This means that even if you know tanθ, you need additional information to find θ itself.

In this problem, we need to decide between θ = -.466 and 2.67, which, as you can check with a calculator, have the same tangent. So is the choice arbitrary? It would be if we didn't have more information, but in this problem we do. θ = 2.67 is correct because we can plug it back into the original two equations involving sine and cosine and get a true statement. But plugging in θ = -.466 doesn't work, as you can check.

Sorry I didn't notice this before. It's actually a common problem when solving for angles; arcsine and arccosine do this too. In general, evaluating an inverse trig function will give you a couple of possibilities, and you need to pick the right one using additional information from the problem. Unfortunately, calculators will blithely give you a single number like nothing is wrong, so you need to be alert.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top