Calculating (g∘f)'(6) using the Chain Rule and Dot Product

  • Thread starter Thread starter squenshl
  • Start date Start date
squenshl
Messages
468
Reaction score
4
Homework Statement
Suppose that ##\alpha,\beta: \mathbb{R}\to \mathbb{R}## and ##g: \mathbb{R}^2\to \mathbb{R}## are differentiable functions and ##f: \mathbb{R}\to \mathbb{R}^2## is the function defined by ##f(t) = (\alpha(t),\beta(t))##. Suppose further that
$$f(6) = (10,-10), \quad \alpha'(6) = 4, \quad \beta'(6) = -3, \quad g_x(10,-10) = -1, \quad \text{and} \quad g_y(10,-10) = -2.$$
Then ##(g\circ f)'(6)## equals to
1. ##24##.
2. ##-24##.
3. ##2##.
4. ##0##.
5. ##-2##.
Relevant Equations
Multivariate chain rule formula.
The solution is 3: It's just ##(g\circ f)'(6) = (-1,-2)\cdot (4,-3) = (-1\times 4)+((-2)\times (-3)) = -4+6 = 2## using the multi-variate chain rule and the dot product.

Is this correct and if not how do I go about doing it?
Thanks!
 
Physics news on Phys.org
Yes, it's correct.
 
Thanks!
 
  • Like
Likes member 587159
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top