Calculating Jet Velocity with Kinematic Equations

AI Thread Summary
The discussion revolves around calculating the final velocity of a lear jet traveling at 203.6 m/s over a distance of 2395 meters, with an acceleration of 15.2 m/s². Initially, there was confusion regarding whether acceleration was implied in the problem, but it was clarified that the jet maintains its initial speed unless acceleration is factored in. Using the kinematic equation V² = Vo² + 2ax, participants calculated the final velocity, correcting initial errors in their calculations. The final correct velocity was determined to be approximately 338.03 m/s after properly applying the equation. The importance of accurately squaring initial velocity and correctly applying kinematic equations was emphasized throughout the discussion.
deaninator
Messages
64
Reaction score
0

Homework Statement


Mike is piloting a lear jet traveling at 203.6 m/s over a distance of 2395 meters. How fast will the jet be moving at the end of this acceleration?

Homework Equations


V = D/T?
You need to incorporate one of the "kinematic equations" in order to solve.
V=Vo + at
X=1/2(Vo -V)T
X=VoT + 1/2at2
V2=Vo2 + 2ax

(If a 2 is after a letter then it means squared)
X=displacement
A=Acceleration
T=Tome
Vo=Initial Velocity
V=Velocity

The Attempt at a Solution



V2 = 203.6 + 2(15.2)(2395)
V2 = 270.21...That answer is NOT correct.
 
Last edited:
Physics news on Phys.org
The question says "a lear jet traveling at 203.6 m/s over a distance of 2395 meters". There is no acceleration implied there, you are given a speed not acceleration, and so the jet would be traveling at 203.6m/s at the end of this distance. Or is there more to this question?

Also, please show an attempt at the solution.

Jared
 
jarednjames said:
The question says "a lear jet traveling at 203.6 m/s over a distance of 2395 meters". There is no acceleration implied there, you are given a speed not acceleration, and so the jet would be traveling at 203.6m/s at the end of this distance. Or is there more to this question?

Also, please show an attempt at the solution.

Jared

I'm sorry, the acceleration is 15.2 m/s/s
 
Much better.

But I still need an attempt at a solution.

Jared
 
jarednjames said:
The question says "a lear jet traveling at 203.6 m/s over a distance of 2395 meters". There is no acceleration implied there, you are given a speed not acceleration, and so the jet would be traveling at 203.6m/s at the end of this distance. Or is there more to this question?

Also, please show an attempt at the solution.

Jared

jarednjames said:
Much better.

But I still need an attempt at a solution.

Jared

Sorry I forgot that, it is now up.
 
Using V2=Vo2 + 2ax

You know Vo, a and x.

Plug in your values and out comes your answer for final velocity V.

Note that in your solution attempt you didn't square V and Vo so your answer is wrong.

Once you get a value for V2 you need to square root it to get V.

Jared
 
jarednjames said:
Using V2=Vo2 + 2ax

You know Vo, a and x.

Plug in your values and out comes your answer for final velocity V.

Jared

Yes, I did that, and the product was 270.21...that is unfortunately not correct according to my computer.
 
No, you didn't do that.

Refresh the page. I updated what you did wrong.

Jared
 
jarednjames said:
No, you didn't do that.

Refresh the page. I updated what you did wrong.

Jared

All right. V2 = 0 + 2(15.2)(2395)
V2 = 73011.6
V = 270.206 M/S
 
  • #10
deaninator said:
All right. V2 = 0 + 2(15.2)(2395)
V2 = 73011.6
V = 270.206 M/S

Wait was the initial velocity 0 or 203.5 m/s?
 
  • #11
Vo = 203.6, x = 2395 and a = 15.2

V2 = 203.62 + (2*15.2*2395)

V2 = 41452.96 + 72808 = 114260.96

V = Square Root (114260.96)

Jared
 
  • #12
jarednjames said:
Vo = 203.6, x = 2395 and a = 15.2

V2 = 203.62 + (2*15.2*2395)

V2 = 41452.96 + 72808 = 114260.96

V = Square Root (114260.96)

Jared

I ended up with 338.03 m/s and that was correct.
Thank you sir.
 
Back
Top