$ isympy
Python 2.6.4 console for SymPy 0.7.0-git
These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z = symbols('xyz')
>>> k, m, n = symbols('kmn', integer=True)
>>> f, g, h = map(Function, 'fgh')
Documentation can be found at http://sympy.org/
In [1]: s,m,kg=symbols("s,m,kg",real=True,positive=True)
In [2]: v0=Matrix([-3*m/s,4*m/s,0*m/s])
In [3]: t=symbols("t",real=True,positive=True)
In [4]: a=Matrix([3*t/4*m/s**3,-1.0*m/s**2-3*t/4*m/s**3,-10.0*m/s**2])
In [5]: v=v0+integrate(a,(t,0,t))
In [6]: F=a*1*kg
In [7]: a
Out[7]:
⎡ 3⋅m⋅t ⎤
⎢ ───── ⎥
⎢ 3 ⎥
⎢ 4⋅s ⎥
⎢ ⎥
⎢ 3⋅m⋅t m ⎥
⎢- ───── - ──⎥
⎢ 3 2⎥
⎢ 4⋅s s ⎥
⎢ ⎥
⎢ -10.0⋅m ⎥
⎢ ─────── ⎥
⎢ 2 ⎥
⎣ s ⎦
In [8]: v
Out[8]:
⎡ 2 ⎤
⎢ 3⋅m 3⋅m⋅t ⎥
⎢ - ─── + ────── ⎥
⎢ s 3 ⎥
⎢ 8⋅s ⎥
⎢ ⎥
⎢ 2⎥
⎢4⋅m m⋅t 3⋅m⋅t ⎥
⎢─── - ─── - ──────⎥
⎢ s 2 3 ⎥
⎢ s 8⋅s ⎥
⎢ ⎥
⎢ -10.0⋅m⋅t ⎥
⎢ ───────── ⎥
⎢ 2 ⎥
⎣ s ⎦
In [9]: F
Out[9]:
⎡ 3⋅kg⋅m⋅t ⎤
⎢ ──────── ⎥
⎢ 3 ⎥
⎢ 4⋅s ⎥
⎢ ⎥
⎢ ⎛ 3⋅m⋅t m ⎞⎥
⎢kg⋅⎜- ───── - ──⎟⎥
⎢ ⎜ 3 2⎟⎥
⎢ ⎝ 4⋅s s ⎠⎥
⎢ ⎥
⎢ -10.0⋅kg⋅m ⎥
⎢ ────────── ⎥
⎢ 2 ⎥
⎣ s ⎦
In [10]: pp=[]
In [11]: for i in range(3): pp.append((F[i]*v[i]).expand())
...:
In [12]: P=Matrix(pp)
In [13]: P
Out[13]:
⎡ 2 2 3 ⎤
⎢ 9⋅kg⋅t⋅m 9⋅kg⋅m ⋅t ⎥
⎢ - ───────── + ────────── ⎥
⎢ 4 6 ⎥
⎢ 4⋅s 32⋅s ⎥
⎢ ⎥
⎢ 2 2 2 2 2 3⎥
⎢ 2⋅kg⋅t⋅m 4.0⋅kg⋅m 1.125⋅kg⋅m ⋅t 9⋅kg⋅m ⋅t ⎥
⎢- ───────── - ───────── + ────────────── + ──────────⎥
⎢ 4 3 5 6 ⎥
⎢ s s s 32⋅s ⎥
⎢ ⎥
⎢ 2 ⎥
⎢ 100.0⋅kg⋅t⋅m ⎥
⎢ ───────────── ⎥
⎢ 4 ⎥
⎣ s ⎦
In [14]: P_sum=P[0]+P[1]+P[2]
In [15]: P_sum
Out[15]:
2 2 2 2 2 3
95.75⋅kg⋅t⋅m 4.0⋅kg⋅m 1.125⋅kg⋅m ⋅t 9⋅kg⋅m ⋅t
───────────── - ───────── + ────────────── + ──────────
4 3 5 6
s s s 16⋅s
In [16]: W=integrate(P_sum,t)
In [17]: W
Out[17]:
2 2 2 2 3 2 4
4.0⋅kg⋅t⋅m 47.875⋅kg⋅m ⋅t 0.375⋅kg⋅m ⋅t 9⋅kg⋅m ⋅t
- ─────────── + ─────────────── + ────────────── + ──────────
3 4 5 6
s s s 64⋅s
In [18]: Wsum=integrate(P_sum,(t,0*s,4*s))
In [19]: Wsum
Out[19]:
2
810.0⋅kg⋅m
───────────
2
s