sin^2(x) = (1-cos(2x))/2. Combined with the identity cos(x) = -cos(180-x), for example, sin^2(1)+sin^2(89) = (1-cos(2))/2+(1-cos(178)/2 = (1 - cos(2) + cos(2) + 1)/2 = 1.
You will find that for much smaller factorials that this is true. 15! also has the last 2 digits of 00, for example. You can guarantee that the smallest number n such that the last 2 digits of n! are 0 that all numbers larger than n also have this property. Your task is to find the smallest n where this is true then you instantly know that all factorials larger than that do not contribute to the smallest 2 digits.
KEEP IN MIND: Any digits other than the 2 smallest in any factorial do not concern you! For example, when you want to find the last 2 digits of 7427128 multiplied by 781276, you need only consider what is 28 multiplied by 76. This is an important idea in something called modular arithmetic.