Calculating Line Integrals: Solving for Limits and Using Parametric Equations

Nachore
Messages
16
Reaction score
0
Evaluate the line integral \int y^(2) dx + xy dy from A(1,0) to B(-1,4) with C: x = 1-t, y = t^(2), 0≤t≤2

I used:
eq0002MP.gif


eq0003MP.gif


Do I make the limits from 0 to 2? What do I do with the A(1,0) and B(-1,4)?

Please help? Thanks.
 
Physics news on Phys.org
anyone? help?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top