Calculating Loss Tangent and Poynting Vector for Electromagnetic Waves

  • Thread starter Thread starter unstoppable
  • Start date Start date
unstoppable
Messages
12
Reaction score
0
Hi can someone help me out with these questions? I would greatly appreciate it!

1) A source of unidirection plane waves operates within a medium with moderate conductivity sigma. Suppose we measure the complex electric field amplitudes at the source and at some distance z and find that E(z)/E(0)-0.3-j0.4.
(a) Calculate the loss tangent sigma/(omega*epsilon) of the medium. (Give a numerical value)

(b) What is the ratio of complex magnetic field amplitudes H(z)/H(0) for the same z?




2) A perfect planar mirror in the xy-plane has normally incident and reflected electromagnetic plane waves in the vacuum region z<0 in front of it, at frequency omega. The magnetic field at the mirror surface is circularly polarized:H=H(x + jy)
(x and y are the unit vectors along x and y).

(a) Find the complex electric field amplitude E(z) in the space z<0.
(b) Find the complex Poynting vector(give magnitude and direction) in the space z<0.






2. Homework Equations

equation for phase velocity: Vp=Vp(omega)=omega/k= c*omega/squarerootof(omega^2-omega^2) Note: The second omega^2 is the cuttoff frequency


equation for group velocity: Vg=Vg(omega)=c*squarerootof(omega^2-omega^2)/(omega)
Note: The second omega^2 is the cuttoff frequency.


c=the speed of light 3 X 10^8 m/s


Circular Polarization: E(0)=Eox=1/2Eo(x+jy) +1/2Eo=(x-jy)
Note: j=the imaginary complex number
E(z)=1/2*Eo(x+jy)*e^-j(ko+K)z+1/2*Eo(x-jy)*e^-j(ko-K)z

Poynting Vector: The Vector E X H is the Poynting Vector. It gives the power per unit area that flows at a point;


Loss Tangent:Theta/(omega*epsilon)
 
Physics news on Phys.org
Hi unstoppable! :smile:

(have a theta: θ and an omega: ω and an epsilon: ε :smile:)

Show us what you've tried, and where you're stuck, and then we'll know how to help. :wink:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top