Calculating Mass Inside a Unit Sphere using Spherical Coordinates

62646264
Messages
3
Reaction score
0
I don't know how to use LaTex or anything yet, so I'll just have to word this right.

Question: If the density of a fluid is given by

p = exp ^ -(x^2+y^2+z^2)^3/2

what is the total mass inside the unit sphere.

Since mass = integral (p dA)
where dA is the element of area

I switched to spherical coords...

M = [int(0..2*Pi)]:[int(0..Pi)]:[int(0..1) : [exp ^ -(p) ^ 3/2] * p^2*sin(phi) dp d(phi) d(theta)

where this is the triple integral of the function designated, with integration bounds listed in parantheses and the order of integration shown at the end of the equation.

I got the answer 2.213...if anyone sees any mistakes, please let me know. Sorry it's not easier to read...:rolleyes:
 
Physics news on Phys.org
What you use here actually is mass = the integral of p with respect to V, volume.

You did make a calculation error: in your integral for M, the expression for the mass should have a p2 term, not a p term, in the exponential (which will reduce to e-(p3))
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top