erobz
Gold Member
- 4,454
- 1,841
For the 50 L tank ( we are missing other factors related to the unknown gas for a numerical result):Chestermiller said:correct. Let's see what you calculate for the final temperature, the initial number of moles, the final number of moles in the left chamber.
$$ [m_{50}]_o = \frac{[P_{50}]_o {V\llap{-}}_{50}}{R T_1}$$
$$ [m_{50}]_f = \frac{[P_{50}]_o {V\llap{-}}_{50}}{R T_1}\left( \frac{[P_{50}]_f}{[P_{50}]_o}\right)^{\frac{1}{\gamma}}$$
$$ [T_{50}]_f = T_1 \left( \frac{[P_{50}]_f}{[P_{50}]_o}\right)^{\frac{\gamma - 1}{\gamma}}$$
Where the final pressure in the tank ##[P_{50}]_f## is given by:
$$[P_{50}]_f = [P_{50}]_o - \frac{ {V\llap{-}}_{600} }{ {V\llap{-}}_{50} } \left( [P_{600}]_f - [P_{600}]_o \right)$$