Calculating Pressure from Air Displacement in Gasoline Tank

AI Thread Summary
The discussion focuses on calculating the pressure created by air displacement in a gasoline tank as gasoline flows in at 10 gpm through a 1.5" diameter entrance and a 5/8" diameter vent. The initial calculation using the Bernoulli equation yielded approximately 2 psi, which participants questioned as being too high. A more refined approach suggests using the equation P1 = 0.5*ρ*(Q/A)^2 to determine static pressure, leading to results indicating pressures significantly less than 1 psi. Experimental data from a similar setup with water at 7 gpm showed a pressure of about 0.75 psig, suggesting that the gas would produce even lower pressure due to its lower density. Overall, the calculations indicate that the pressure from air displacement in the tank is likely much lower than initially estimated.
Caleb_P
Messages
4
Reaction score
0
I am struggling with what seemed to be a simple problem and any help would be greatly appreciated.
I have to determine the amount of pressure created when air is displaced buy gasoline flowing into a tank.
The gas enters the tank at 10gpm. The entrance has a diameter of 1.5" and the vent has a diameter of 5/8".
I need to know the pressure of the air at the exit of the tank.
Can this be modeled with the Bernoulli equation?
Using the Bernoulli equation I got an answer of around 2psi but this does not seem quite right.
 
Engineering news on Phys.org
Yes, I would think Bernoulli's would work.

2psi seems high. Can you show your work?
 
Here's what I've got.
 

Attachments

  • 20180817_080727_HDR.jpg
    20180817_080727_HDR.jpg
    21.2 KB · Views: 371
Caleb, you want the entrance pressure to the vent, which is also the tank static pressure, with an vent air volume flow equivalent to that of the gasoline volume flow into the tank.

The simplest Bernoulli's equation for that determination reduces to: P1 = .5*ρ*(Q/A)^2, With ρ in lb/cu ft, Q in cfs, and A in ft^2 for units consistency.

In that equation, P1 is the static pressure in the tank, and .5*ρ*Q/A is the equivalent amount of dynamic flowing energy thru the vent that can be converted from the P1 tank static pressure.
The result will be a tank pressure in psf that when converted to psi is much less than 1 psi.
 
Last edited:
I also attempted to use the fluid momentum equation which gave me approximately .06 psig but I was very unsure about the validity of this principle in this particular situation. I was also able to use water that had a flow rate of 7 gpm and determine the pressure experimentally and it was about .75 psig. I assume this is very similar to the number I would get with the gas except the gas would create less pressure because it has a lower density.
 
Using my above equation and units, my result for air is:

upload_2018-8-20_15-48-41.png
 

Attachments

  • upload_2018-8-20_15-48-41.png
    upload_2018-8-20_15-48-41.png
    2 KB · Views: 448
  • Like
Likes russ_watters
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top