Calculating Radius of Convergence for Power Series | Limsupreme Challenge

  • Thread starter Thread starter betty2301
  • Start date Start date
  • Tags Tags
    Challenge
betty2301
Messages
21
Reaction score
0

Homework Statement


Calculate the radius of convergence of \sum_{n=0}^\infty a_{n}^{2}z^{n}
let \sum_{n=0}^\infty a_{n}z^{n}RADIUS R

Homework Equations


\limsup|a_n|^{\frac{1}{n}}=\limsup |\frac{a_{n+1}}{a_n}|

The Attempt at a Solution


the latex is killin me please help....
 
Physics news on Phys.org
Again this should be straightforward. Just compute one of the limits under relevant equations using the coefficients for your new power series and relate this to R.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top