Calculating Residue at -2: Math Methods w/ Arfken et al.

  • Thread starter Thread starter curious_mind
  • Start date Start date
  • Tags Tags
    Residue
Click For Summary
The discussion revolves around a calculation of residue at the point -2, as presented in Arfken et al.'s book. Participants express confusion regarding the calculations, particularly the treatment of the function and its singularities. There is a consensus that the example may contain typos, specifically regarding the values of z and the denominator. The correct approach to finding the residue is highlighted, emphasizing the need for clarity on branch points and multivalued functions. Overall, the example is deemed problematic, leading to calls for clarification and correction.
curious_mind
Messages
48
Reaction score
9
Homework Statement
Calculate the residue of the complex function ## f(z) = \dfrac{\ln z}{z^2 + 4} ## at ## z = 2 e^{i \pi} ##
Relevant Equations
## a = \lim_{z \rightarrow z_0} \left[ \left(z_0 - z\right) f(z) \right] ##
This question is given as an example in the book by
Arfken, Weber, Harris, Mathematical Methods - a Comprehensive Guide, Seventh Edition.

It is solved as below attached in the image.

Can someone point it out how they proceed with calculations ? I do not seem to get their calculation.
I am aware ## \ln z ## is a multivalued function. But at this point I do not know things about Branch points and etc.

According to my understanding the function is not singular at point ## z=2 e^{i \pi} =−2 ## . So why they have used limits ?

Am I missing something ? Please help.

Thanks.
 

Attachments

  • 20230317_074323.jpg
    20230317_074323.jpg
    13.4 KB · Views: 136
Physics news on Phys.org
Even then, in numerator, it should be ## \ln 2 + i \dfrac{\pi}{2} ## right ?
 
fresh_42 said:
I guess there is a typo and it should be ##z_1=2e^{i \pi /2}.##
Or the denominator was supposed to be ##z^2-4##. In either case, the example is all messed up.
 
curious_mind said:
Even then, in numerator, it should be ## \ln 2 + i \dfrac{\pi}{2} ## right ?
Yes, ...
vela said:
Or the denominator was supposed to be ##z^2-4##. In either case, the example is all messed up.
... and yes. At least, ##2e^{i \pi /2}## is a singularity. However, ##z=-2## would be faster to solve.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...