Calculating the charge distribution on the surface of an assymetric conductor

Chitran
Messages
2
Reaction score
0
How do I calculate the charge distribution on the surface of any asymmetric closed conducting surface? Is it possible for me to calculate the surface charge density 'σ' as a function of '\bar{r}' the position vector in a spherical co-ordinate system in space, provided I know that the conductor has been qiven a net charge 'Q' and the equation of the conductor in space is ((x/a)^2)+((y/b)^2)+((z/c)^2)=1...
 
Physics news on Phys.org
For any conducting surface you will have to resort to an approximation.

In brief: use a numerical method to establish the Electric field for the system. Use that E field result to establish surface charge distribution.
 
But how do I calculate \bar{E} if I don't know my σ? It's like the chicken egg problem except that it's not what comes first that matters, but I need one to know the other. All I know unfortunately is the shape of the conductor and the total charge Q which according to the uniqueness theorum has a unique way of settling on the surface in the abscence of any external electric field...
 
you don't need to know anything about the charge. Field lines are normal to a conducting surface and themselves normal to equipotentials. This means that you can set up a grid with random starting values for potential and by recalculating each value in turn end up closer to the correct solution.

a quick google gave this http://www.physics.hku.hk/~phys3231/pdf/P1%20-%20Static%20Electric%20Field%20-%20Laplaces%20equation%20in%202D.pdf The 3d process is very similar.

Also http://www.ece.msstate.edu/~donohoe/ece3323analytical_numerical_techniques.pdf you need the last few pages.

The procedure looks hard but really isn't: Though it is a long time since I last did one!
 
Last edited by a moderator:
Just solve Laplace's equation for the potential. You know that the potential on the surface is a constant (which you may as well set to zero) and that the potential at large distances should look like that of a point charge, so you have your 2 boundary conditions. From the potential, you can determine the charge density.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top