Calculating the charge if the electric field density = 0

Click For Summary

Discussion Overview

The discussion revolves around calculating charge in the context of an electric field density that equals zero. Participants explore the mathematical integration involved in determining charge density over a sphere, addressing various assumptions and notation used in the calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants question whether the variable r is treated correctly as a constant or variable in the context of the sphere's radius.
  • There is a discussion on the correct expression for the differential volume element dv in spherical coordinates.
  • Participants debate the integration limits and whether certain terms should be treated as constants during integration.
  • One participant suggests using different notations (r for the integration variable and R for a constant) to avoid confusion.
  • There is a correction regarding the integral of r^3, with a participant stating it should be a^4 / 400 instead.
  • Concerns are raised about the dimensions of expressions used in the calculations, emphasizing the need for consistent notation.
  • A participant mentions obtaining a charge of -2.09e-8 C and discusses a discrepancy with another calculation that resulted in -2.09e-4 C.

Areas of Agreement / Disagreement

Participants express differing views on the treatment of variables and constants in the integration process, leading to unresolved questions about the correct approach and notation. There is no consensus on the final calculations or methods used.

Contextual Notes

Limitations include potential confusion arising from the use of multiple variables (r and R) and the need for clarity in notation. Some mathematical steps remain unresolved, particularly regarding the integration process and the resulting charge calculations.

falyusuf
Messages
35
Reaction score
3
Homework Statement
Attached below.
Relevant Equations
Attached below.
Question:
846%2F8468799a-80b2-4052-85ae-161b13a4fffa%2Fimage.jpg

Relevant Equations:

1637429860368.png

1637429882368.png

My attempt:
1637429910033.png

1637429929135.png

Could someone please confirm my solution?
 
Physics news on Phys.org
Doesn't look right.
1. Is r a variable or a constant?
2. Is dv = drdθdφ?
3. Is the integral of r3/100 = a3/100?
 
mjc123 said:
1. Is r a variable or a constant?
r is constant as it is the radius of the sphere whereas a is variable.
mjc123 said:
2. Is dv = drdθdφ?
yes, (for the sphere)
mjc123 said:
3. Is the integral of r3/100 = a3/100?
I was mistaken here, it should be a^4 / 400
 
falyusuf said:
r is constant as it is the radius of the sphere whereas a is variable.
You are integrating by dr from limits 0 to a, yet treat 4πr2 as a constant.
falyusuf said:
yes, (for the sphere)
Really? What are the dimensions on either side?
 
mjc123 said:
You are integrating by dr from limits 0 to a, yet treat 4πr2 as a constant.

Really? What are the dimensions on either side?
Is dv = r^2 sin theta dtheta dPhi dr ?
I tried to correct my mistakes and this is what I got:
1637438382719.png
 
Last edited:
I still think you're using r in a confusing way. Use r for the integration variable and R (constant) for the distance at which you want to evaluate the field. Then you are not integrating r3, but r5/R2.
 
mjc123 said:
I still think you're using r in a confusing way. Use r for the integration variable and R (constant) for the distance at which you want to evaluate the field. Then you are not integrating r3, but r5/R2.
Am I right now?
1637445069498.png
 
The integration variable is r, not R. And the upper limit is a, not R.
 
mjc123 said:
The integration variable is r, not R. And the upper limit is a, not R.
Sorry I was confused.
1637461115389.png

1637461154289.png


Right?
 

Attachments

  • 1637446546109.png
    1637446546109.png
    7.8 KB · Views: 155
Last edited:
  • #10
R is not 0.1 m. a is 0.1 m. You should have R2 in the denominator for both expressions, and it will cancel out.
You need to be very careful in distinguishing the various distances and using consistent notation for them. Too many rs is a recipe for confusion.
 
  • #11
mjc123 said:
R is not 0.1 m. a is 0.1 m. You should have R2 in the denominator for both expressions, and it will cancel out.
You need to be very careful in distinguishing the various distances and using consistent notation for them. Too many rs is a recipe for confusion.
Thanks for clarifying. I solved it using two methods and I got the same magnitude with opposite sign. Could you please figure out my mistake?
1637589653658.png

1637589697386.png
 
  • #12
I'm not quite sure what you're doing in method 2, but the point charge at the centre should be equal to minus the charge obtained by integrating ρ over the volume of the sphere. So from outside it behaves like a point charge of zero.
I think your answer of -2.09e-8 C is correct. (I did it in my head and got -2.09e-4 C; I think I must have accidentally switched the factor of 100 from the bottom to the top:).)
 
  • Like
Likes   Reactions: falyusuf
  • #13
mjc123 said:
I'm not quite sure what you're doing in method 2, but the point charge at the centre should be equal to minus the charge obtained by integrating ρ over the volume of the sphere. So from outside it behaves like a point charge of zero.
I think your answer of -2.09e-8 C is correct. (I did it in my head and got -2.09e-4 C; I think I must have accidentally switched the factor of 100 from the bottom to the top:).)
I got it now.. Thank you so much. Appreciate your help.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
980
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K