teddd
- 62
- 0
Hi guys, can you help me with this?
I'm supposed to calculate the energy momentum for the classic Maxwell Lagrangian, \mathcal{L}=-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} , where F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu
with the well known formula:
T^{\sigma\rho}=\frac{\delta\mathcal{L}}{\delta \partial_{\sigma} A_\gamma}\partial^\rho A_\gamma-\mathcal{L}g^{\sigma\rho}
The point is that I'm not sure on how should I calculate the \frac{\delta\mathcal{L}}{\delta\partial_\sigma A_\gamma}\partial^\rho A_\gamma=-\frac{1}{4}\frac{\delta\left[(\partial^\mu A^\nu-\partial^\nu A^\mu)(\partial_\mu A_\nu -\partial_\nu A_\mu)\right]}{\delta\partial_\sigma A_\gamma}\partial^\rho A_\gamma term; i cannot figure out on which component should i derive.Can you help me?
I'm supposed to calculate the energy momentum for the classic Maxwell Lagrangian, \mathcal{L}=-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} , where F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu
with the well known formula:
T^{\sigma\rho}=\frac{\delta\mathcal{L}}{\delta \partial_{\sigma} A_\gamma}\partial^\rho A_\gamma-\mathcal{L}g^{\sigma\rho}
The point is that I'm not sure on how should I calculate the \frac{\delta\mathcal{L}}{\delta\partial_\sigma A_\gamma}\partial^\rho A_\gamma=-\frac{1}{4}\frac{\delta\left[(\partial^\mu A^\nu-\partial^\nu A^\mu)(\partial_\mu A_\nu -\partial_\nu A_\mu)\right]}{\delta\partial_\sigma A_\gamma}\partial^\rho A_\gamma term; i cannot figure out on which component should i derive.Can you help me?
Last edited: