Calculating velocity with variable acceleration

AI Thread Summary
The discussion revolves around finding the velocity equation for an object with variable acceleration defined by a rational function. Initial attempts to use standard motion equations were unsuccessful due to the non-constant nature of acceleration. Suggestions included using differential equations and the chain rule to relate acceleration, velocity, and distance, but some mathematical manipulations were deemed incorrect. The conversation highlights the potential of using energy principles to derive velocity as a function of position, although concerns about the necessity of known energy changes were raised. Overall, the thread emphasizes the complexity of the problem and the need for a solid mathematical approach.
scain6043
Messages
5
Reaction score
0
This is not so much coursework as it is a thought experiment that has been bugging me for a while now.

1. Homework Statement


Find the equation for velocity either as a function of distance (x) or time (t).

I have an object whose acceleration is given by the rational function a(x) = (a+x)/(b-x) where x is the distance traveled and a and b are some constant.

The actual equation has many more values and constants in it but this simplified version should be fairly similar.

2. The attempt at a solution

First, I resorted to the motion equations but quickly realized that the acceleration is not constant. My second thought was to use motion equations that deal with variable acceleration that use jerk and so forth but soon found that due to the rational nature of the function a(x) that it is not possible to get a derivative that is a constant.

Yesterday, the idea came to me that if I took the derivative of a(x) my resulting function would have the units 1/(sec)2 which could be manipulated by taking the square root of the reciprocal to obtain time with respect to distance (x). However, this still does not solve the problem because I'm not sure if the manipulation is mathematically sound and this still does not solve the problem of variable acceleration. Any thoughts?
 
Physics news on Phys.org
scain6043 said:
Yesterday, the idea came to me that if I took the derivative of a(x) my resulting function would have the units 1/(sec)2 which could be manipulated by taking the square root of the reciprocal to obtain time with respect to distance (x). However, this still does not solve the problem because I'm not sure if the manipulation is mathematically sound and this still does not solve the problem of variable acceleration. Any thoughts?
I would be surprised if that gave the correct t(x)

The goal is to solve the differential equation \frac{d^2x}{dt^2}=\frac{a+x}{b-x}
I am the opposite of an expert at differential equations, but I'm thinking you might be able to separate it and integrate both sides twice:
∫∫\frac{b-x}{a+x}d^2x=∫∫dt^2
The left side would be easier to integrate if you wrote it like this:
∫∫\frac{b-x}{a+x}d^2x=∫∫\frac{b+a-(a+x)}{a+x}d^2x=∫∫(\frac{b+a}{a+x}-1)d^2x

I am not sure if this would give the correct solution. I replied to you so that I can also learn from this problem. I'm sure someone more knowledgeable will help soon.
 
Nathanael said:
I would be surprised if that gave the correct t(x)

The goal is to solve the differential equation \frac{d^2x}{dt^2}=\frac{a+x}{b-x}
I am the opposite of an expert at differential equations, but I'm thinking you might be able to separate it and integrate both sides twice:
∫∫\frac{b-x}{a+x}d^2x=∫∫dt^2
The left side would be easier to integrate if you wrote it like this:
∫∫\frac{b-x}{a+x}d^2x=∫∫\frac{b+a-(a+x)}{a+x}d^2x=∫∫(\frac{b+a}{a+x}-1)d^2x

I am not sure if this would give the correct solution. I replied to you so that I can also learn from this problem. I'm sure someone more knowledgeable will help soon.
Hi Nathanial. You can't integrate it like that. It's not correct mathematically. But, here is something that will work:

By the chain rule:

##a = \frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}=\frac{1}{2}\frac{dv^2}{dx}##

Chet
 
  • Like
Likes Nathanael
Chestermiller said:
It's not correct mathematically.
In particular ##\int d^2x## is meaningless. It can't be thought of as ##\int\int dx^2##.
Chestermiller said:
By the chain rule:
##a = \frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}=\frac{1}{2}\frac{dv^2}{dx}##
Yes, a trick worth noting. It's equivalent to working with energy instead of forces, ##F.dx = mv.dv##. Typically, it allows you to get v as a function of position in closed form, but not v as a function of time. Fortunately, the OP asks for either.
 
  • Like
Likes Nathanael
Thanks for the replies! I understand that using energy I can find the velocity but isn't that only if the change in energy is already known?
 
scain6043 said:
Thanks for the replies! I understand that using energy I can find the velocity but isn't that only if the change in energy is already known?
No way. Play around with the equations a little and see what you come up with.

Chet
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top