your argument, say in the case of degree two polynomials, seems to be the following: since pairs of roots have 2 degrees of freedom, and degree two polynomials have also the same number, the map taking a pair of roots to the polynomial having those roots, must be surjective. E.g. we have (r,s)-->(x-r)(x-s) = x^2-(r+s)x + rs --> (r+s, rs). so we may ask if in fact the map taking (r,s)-->(r+s,rs) = (b,c), is indeed surjective? But note that in this case we have b^2-4c = r^2 - 2rs + s^2 = (r-s)^2 ≥ 0. so the image of this map is the subset of those pairs of reals (b,c) satisfying b^2-4c ≥ 0, a proper subset of R^2, so the map is definitely not surjective, since it misses e.g. the pair (0,1).
In general there is no good reason to expect a map from k^n-->k^n to be surjective unless we know more about both the map and the field k. In particular this example apparently shows it is not enough that the map be finite to one (only (r,s) and (s,r) have the same image), and given by polynomials.
Notice however that although r^2 is an "open set" with no boundary, the image is a closed set with boundary the curve b^2 = 4c. This is allowed by the fact that the map is generally 2 to 1, except over that curve, so it folds R^2 up along a curve, and hence maps it all on one side of (and onto) that parabola.