hmc: Are these hydraulic cylinders you are referring to? If you have two hydraulic cylinders in parallel (side by side), you will double the applied force. But you have two hydraulic cylinders in series (end to end). Therefore, you will not increase the applied force. The force will be the same as one hydraulic cylinder.
Here is the proof you were asking for. If you have one hydraulic cylinder that outputs a maximum applied force of F, then the anvil it is pressing against already is pushing back with an equal and opposite reaction force F. Now if you replace the anvil with another hydraulic cylinder that outputs a maximum force F, then you simply replaced what the anvil was already doing (except you have replaced the anvil with a more expensive and weaker part). The pressure in the hydraulic fluid can go up to only p = F/A; otherwise, you will damage your control system, right? Therefore, you cannot obtain higher than F = p*A, regardless of how many hydraulic cylinders you place in series (end to end).
(Even if you can apply higher than p = F/A without damaging your control system, you cannot apply this to the hydraulic cylinder, because you will overstress and damage the steel in your hydraulic cylinder.)
Even if these presses are mechanical, instead of hydraulic, the answer is the same, because you are replacing the anvil with a second press, in series (end to end), that outputs a maximum force F, which is the same as the reaction force that was already applied by the anvil.