- #1
ranjit_k
- 5
- 0
The textbooks say that motors and generators are the same structurally, they just differ in what is input (motion / voltage) and what is output (voltage / motion). I have also read that electric trains use this phenomenon for their 'electric braking', by running their motors as generators by cutting the power to them and connecting them to resistors which draw huge current and help to brake the train.
To demonstrate this effect to my students, I want to use the pedestal fan in my room (running off the mains).
Will the following work? -
I run the fan at its highest speed. Then I take out the power cord from the mains socket and quickly connect it to a small bulb. Will the bulb light while the fan coasts to a stop? Specific query - does the effect work on AC as well as DC motors?
Can our fans be braked in the same way as trains, by not merely cutting power to them but by drawing power from them by having a third position on the switch where a resistor is connected across the fan to drain its current (and thus its residual motion)?
Ranjit
To demonstrate this effect to my students, I want to use the pedestal fan in my room (running off the mains).
Will the following work? -
I run the fan at its highest speed. Then I take out the power cord from the mains socket and quickly connect it to a small bulb. Will the bulb light while the fan coasts to a stop? Specific query - does the effect work on AC as well as DC motors?
Can our fans be braked in the same way as trains, by not merely cutting power to them but by drawing power from them by having a third position on the switch where a resistor is connected across the fan to drain its current (and thus its residual motion)?
Ranjit